The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly meta...The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.展开更多
The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere i...The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.展开更多
The ebct of hydrogenation-dehydrogenation on the microstructure of forping Ti-24Al14Nb-3V-0.5MO alloy was investigated by TEM and X-ray ddection. The resultsshowed that the microstructure consists of O and B2 phases a...The ebct of hydrogenation-dehydrogenation on the microstructure of forping Ti-24Al14Nb-3V-0.5MO alloy was investigated by TEM and X-ray ddection. The resultsshowed that the microstructure consists of O and B2 phases as received materials, and tmoprmation of B2 phase to O phase can be eNctively promoted 6y hydrogenation. The lamellate γ hydride was found in O phase with more hydmpen content, and this γ hydride could be decomposed by dehydmpenation treatment. The sole fine Ophase could be obtained 6y hydmpenation-dehydmpenation treatment, and two possible mechanisms for the microstructure improvetnent have been discussed on the basis of experimental results.展开更多
The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a...The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
Both hydrogen induced cracking and overload crack initiated at same characteristic distance, r~*,within the plastic zone along the slip line when the plastic zone developed to a critical ex- tent.For the overload crac...Both hydrogen induced cracking and overload crack initiated at same characteristic distance, r~*,within the plastic zone along the slip line when the plastic zone developed to a critical ex- tent.For the overload crack. K_(IC)=αr~*^(1/2)[σ_F^((n+1)/2n)/σ_(ys)^((1-n)/2n)],σ_F=σ_0+g[2μbσ_(th)/π~2L(1-v)]^(1/2) For the hydrogen induced cracking: K_(IH)=αr~*^(1/2)[σ_F(H)^((n+1)/2n)/σ_(ys)(H)^((1-n)/2n)], σ_F(H)={σ_0(H)+g[2μbσ_(th)(H)/π~2L(1-v)]^(1/2)}/k Hydrogen pomoting the dislocation multiplication and motion would result in σ_0(H)<σ_0, k>1,Therefore,hydrogen promoting the cleavage fracture in titanum aluminide can be due to that hydrogen facilitates the local plastic deformation,which results in σ_F(H)<σ_F and then K_(IH)<K_(IC).展开更多
Measurements of hydrogen absorption desorption behavior of Nb Al alloys, Nb ss (Nb solid sloution), Nb ss +Nb 3Al, Nb 3Al, Nb 3Al+Nb 2Al, were carried out under hydrogen pressure from 0 to 3.4 MPa at 353 and 357 K, al...Measurements of hydrogen absorption desorption behavior of Nb Al alloys, Nb ss (Nb solid sloution), Nb ss +Nb 3Al, Nb 3Al, Nb 3Al+Nb 2Al, were carried out under hydrogen pressure from 0 to 3.4 MPa at 353 and 357 K, along with mircostructural observation and X ray diffraction analysis. It was found that single phase alloys of Nb ss and Nb 3Al are not pulverized regardless of a considerable amount of hydrogen absorption, while two phase alloys of Nb ss +Nb 3Al and Nb 3Al+Nb 2Al are readily pulverized. X ray diffraction analysis indicated that no hydride with crystal structure different from constituent phases is formed by hydrogen absorption, but lattice parameters of Nb ss and Nb 3Al are increased. Pulverization of Nb Cr alloys was investigated under a hydrogen atmosphere of 0.1 MPa in an arc melting chamber without exposure to air after arc melting. Similarly, hydrogen pulverization occurs only in two phase alloys consisting of Nb ss and NbCr 2. Based on the measured lattice parameters of Nb ss and Nb 3Al(NbCr 2) in the hydrogenated two phase alloys and the microstructural observations, a mechanism for hydrogen pulverization is discussed.展开更多
文摘The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.
文摘The microstructures of Ti-14Al-21Nb and Ti-14Al-20Nb-2Mo-3.2V(wt%) alloys have been investikated by transmission electron microscopy(TEM).The phase constitution and the orientation relationship between α2and βwere identified by means of the selected area diffraction and the micro-diffraction techniques.Results show that,compared to Ti-14Al-21Nb,the alloying elements Mo and V can greatly increase the fraction of β phase and improve significantly the microstructures of Ti-14Al-20Nb-2Mo-3.2V.The ordered B2 structure is also evident in the residual βgrains of the latter alloy.
文摘The ebct of hydrogenation-dehydrogenation on the microstructure of forping Ti-24Al14Nb-3V-0.5MO alloy was investigated by TEM and X-ray ddection. The resultsshowed that the microstructure consists of O and B2 phases as received materials, and tmoprmation of B2 phase to O phase can be eNctively promoted 6y hydrogenation. The lamellate γ hydride was found in O phase with more hydmpen content, and this γ hydride could be decomposed by dehydmpenation treatment. The sole fine Ophase could be obtained 6y hydmpenation-dehydmpenation treatment, and two possible mechanisms for the microstructure improvetnent have been discussed on the basis of experimental results.
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
文摘Both hydrogen induced cracking and overload crack initiated at same characteristic distance, r~*,within the plastic zone along the slip line when the plastic zone developed to a critical ex- tent.For the overload crack. K_(IC)=αr~*^(1/2)[σ_F^((n+1)/2n)/σ_(ys)^((1-n)/2n)],σ_F=σ_0+g[2μbσ_(th)/π~2L(1-v)]^(1/2) For the hydrogen induced cracking: K_(IH)=αr~*^(1/2)[σ_F(H)^((n+1)/2n)/σ_(ys)(H)^((1-n)/2n)], σ_F(H)={σ_0(H)+g[2μbσ_(th)(H)/π~2L(1-v)]^(1/2)}/k Hydrogen pomoting the dislocation multiplication and motion would result in σ_0(H)<σ_0, k>1,Therefore,hydrogen promoting the cleavage fracture in titanum aluminide can be due to that hydrogen facilitates the local plastic deformation,which results in σ_F(H)<σ_F and then K_(IH)<K_(IC).
文摘Measurements of hydrogen absorption desorption behavior of Nb Al alloys, Nb ss (Nb solid sloution), Nb ss +Nb 3Al, Nb 3Al, Nb 3Al+Nb 2Al, were carried out under hydrogen pressure from 0 to 3.4 MPa at 353 and 357 K, along with mircostructural observation and X ray diffraction analysis. It was found that single phase alloys of Nb ss and Nb 3Al are not pulverized regardless of a considerable amount of hydrogen absorption, while two phase alloys of Nb ss +Nb 3Al and Nb 3Al+Nb 2Al are readily pulverized. X ray diffraction analysis indicated that no hydride with crystal structure different from constituent phases is formed by hydrogen absorption, but lattice parameters of Nb ss and Nb 3Al are increased. Pulverization of Nb Cr alloys was investigated under a hydrogen atmosphere of 0.1 MPa in an arc melting chamber without exposure to air after arc melting. Similarly, hydrogen pulverization occurs only in two phase alloys consisting of Nb ss and NbCr 2. Based on the measured lattice parameters of Nb ss and Nb 3Al(NbCr 2) in the hydrogenated two phase alloys and the microstructural observations, a mechanism for hydrogen pulverization is discussed.