We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-...We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.展开更多
Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using t...Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using the multi-station method in Tianshan,Xinjiang.This paper analyzes the variation of the wave velocity ratio disturbance value to highlight the abnormal,and also back-traces 7 moderate earthquakes at the research area.The results show that:(1)the background value of the wave velocity ratio is almost 1.70,the wave velocity ratio obviously decreases in the middle-eastern part of Tianshan and the region near the Puchang fault;(2)the wave velocity ratio disturbance value is mostly low in the epicenter before four earthquakes of M≥5.0 from 2011 to 2013 in the study area;(3)before 7 moderate strong earthquakes,the earthquake events with low value of the wave velocity ratio account for over 60% of corresponding total events near the epicenters,and the low value of the wave velocity ratio is relatively obvious before moderate earthquakes.展开更多
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic (500-39...The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic (500-397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic (Late Devonian-Early Carboniferous, 385-323 Ma), are all the result of nearly N-S trending shortening and collision (according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period (385-323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period (323-260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period (323-260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.展开更多
Investigating the interrelation between snow and vegetation is essential to explain the response of alpine ecosystems to climate change.Based on the MOD10 A1 daily cloud-free snow product and MOD13 A1 NDVI(normalized ...Investigating the interrelation between snow and vegetation is essential to explain the response of alpine ecosystems to climate change.Based on the MOD10 A1 daily cloud-free snow product and MOD13 A1 NDVI(normalized difference vegetation index)data,this study analysed the spatial and temporal patterns of snow phenology including snow onset date,snow end date,snow cover days,and vegetation phenology including the start of growing season,the end of growing season and the length of growing season in the Chinese Tianshan Mountainous Region(CTMR)from 2002 to 2018,and then investigated the snow phenological effects on the vegetation phenology among different ecogeographic zones and diverse vegetation types.The results indicated that snow onset date was earlier at higher elevations and later at lower elevations,while snow end date showed opposite spatial distribution characteristics.The end of growing season occurred later on the northwest slope of the CTMR and the Yili Valley.The earliest end of growing season was in the middle part of the CTMR.A long growing season was mainly distributed along the northern slope and the Yili Valley,while a short growing season was concentrated in the middle part of the CTMR.The response of vegetation phenology to changes in snow phenology varied among vegetation types and ecogeographic zones.The effect of snow phenology on vegetation phenology was more significant in IID5(Yili Valley)than in the other ecogeographic zones.A negative correlation was observed between the start of growing season and snow end date in nearly 54.78%of the study area,while a positive correlation was observed between the start of growing season and the snow end date in 66.85%of the study area.The sensitivity of vegetation phenology to changes in snow cover varied among different vegetation types.Snow onset date had the greatest effect on the start of growing season in the four vegetation cover types(alpine meadows,alpine steppes,shrubs,and alpine sparse vegetation),whereas the snow cover days had the least impact.Snow end date had the greatest impact on the end of growing season in the alpine steppes and shrub areas.The study results are helpful for understanding the vegetation dynamics under ongoing climate change,and can benefit vegetation management and pasture development in the CTMR.展开更多
Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtaine...Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtained. The results show that the crustal shortening rate of Tianshan, with the longitude (77°±1°)E as the boundary, gradually decreased towards two sides, from the south to the north, indicating that the pushing force of plate becomes weaker along with the fold deformation decreasing of the Tianshan. The direction of principal compressive strain of Tianshan and its adjacent area, nearly NNW, is basically perpendicular to the Tianshan cordillera trend, suggesting the distribution and variation of maximum principal compressive stress in Tianshan and its adjacent region resulted from collision and extrusion of Indian Plate. This paper indicates that the maximum shear strain field mainly con- centrates on two areas, one is Isyk lake of North Tianshan, Kyrgyzstan, and the other is the juncture of Jiashi (South Tianshan) and Pamir arc faults. In the above areas, it can be shown from the epicentral distribution that the strong earthquakes mostly occurs at the high shearing strain accumulation filed or its edge.展开更多
Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indica...Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.展开更多
This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu...This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.展开更多
In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional ru...In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology.展开更多
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
基金Joint Earthquake Science Foundation of China (104001)
文摘We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.
基金funded by the Earthquake Science Fund of Xinjiang (201404)Seismic Tracing Oriented Task of China Earthquake Administration(2015010122)
文摘Based on the seismic observation report data provided by the Xinjiang Digital Seismic Network from 2009 to 2014,we calculate the wave velocity ratio and its background value for medium and small earthquakes by using the multi-station method in Tianshan,Xinjiang.This paper analyzes the variation of the wave velocity ratio disturbance value to highlight the abnormal,and also back-traces 7 moderate earthquakes at the research area.The results show that:(1)the background value of the wave velocity ratio is almost 1.70,the wave velocity ratio obviously decreases in the middle-eastern part of Tianshan and the region near the Puchang fault;(2)the wave velocity ratio disturbance value is mostly low in the epicenter before four earthquakes of M≥5.0 from 2011 to 2013 in the study area;(3)before 7 moderate strong earthquakes,the earthquake events with low value of the wave velocity ratio account for over 60% of corresponding total events near the epicenters,and the low value of the wave velocity ratio is relatively obvious before moderate earthquakes.
文摘The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic (500-397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic (Late Devonian-Early Carboniferous, 385-323 Ma), are all the result of nearly N-S trending shortening and collision (according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period (385-323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period (323-260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period (323-260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.
基金supported by the National Natural Science Foundation of China(41761014)the“One Hundred Outstanding Young Talents Training Program”of Lanzhou Jiaotong University,the National Natural Science Foundation of China(41971094)the Youth Innovation Promotion Association CAS(2019414)。
文摘Investigating the interrelation between snow and vegetation is essential to explain the response of alpine ecosystems to climate change.Based on the MOD10 A1 daily cloud-free snow product and MOD13 A1 NDVI(normalized difference vegetation index)data,this study analysed the spatial and temporal patterns of snow phenology including snow onset date,snow end date,snow cover days,and vegetation phenology including the start of growing season,the end of growing season and the length of growing season in the Chinese Tianshan Mountainous Region(CTMR)from 2002 to 2018,and then investigated the snow phenological effects on the vegetation phenology among different ecogeographic zones and diverse vegetation types.The results indicated that snow onset date was earlier at higher elevations and later at lower elevations,while snow end date showed opposite spatial distribution characteristics.The end of growing season occurred later on the northwest slope of the CTMR and the Yili Valley.The earliest end of growing season was in the middle part of the CTMR.A long growing season was mainly distributed along the northern slope and the Yili Valley,while a short growing season was concentrated in the middle part of the CTMR.The response of vegetation phenology to changes in snow phenology varied among vegetation types and ecogeographic zones.The effect of snow phenology on vegetation phenology was more significant in IID5(Yili Valley)than in the other ecogeographic zones.A negative correlation was observed between the start of growing season and snow end date in nearly 54.78%of the study area,while a positive correlation was observed between the start of growing season and the snow end date in 66.85%of the study area.The sensitivity of vegetation phenology to changes in snow cover varied among different vegetation types.Snow onset date had the greatest effect on the start of growing season in the four vegetation cover types(alpine meadows,alpine steppes,shrubs,and alpine sparse vegetation),whereas the snow cover days had the least impact.Snow end date had the greatest impact on the end of growing season in the alpine steppes and shrub areas.The study results are helpful for understanding the vegetation dynamics under ongoing climate change,and can benefit vegetation management and pasture development in the CTMR.
基金National Natural Science Foundation of China (40074024) and Natural Science Foundation of Xinjiang Uygur Autonomous Region (200321101).
文摘Based on the multiple-term horizontal velocity solutions of 230 GPS monitoring sites in Tianshan and its adjacent region, the GPS site velocity fields and crustal horizontal strain fields in the area have been obtained. The results show that the crustal shortening rate of Tianshan, with the longitude (77°±1°)E as the boundary, gradually decreased towards two sides, from the south to the north, indicating that the pushing force of plate becomes weaker along with the fold deformation decreasing of the Tianshan. The direction of principal compressive strain of Tianshan and its adjacent area, nearly NNW, is basically perpendicular to the Tianshan cordillera trend, suggesting the distribution and variation of maximum principal compressive stress in Tianshan and its adjacent region resulted from collision and extrusion of Indian Plate. This paper indicates that the maximum shear strain field mainly con- centrates on two areas, one is Isyk lake of North Tianshan, Kyrgyzstan, and the other is the juncture of Jiashi (South Tianshan) and Pamir arc faults. In the above areas, it can be shown from the epicentral distribution that the strong earthquakes mostly occurs at the high shearing strain accumulation filed or its edge.
基金supports from the National 973 Project on western China No.2001CB409804the key project of National Natural Science Foundation of China No.49832040.
文摘Studies show that the Tianshan orogenic belt was built in the late stage of the Paleozoic, as evidenced by the Permian red molasses and foreland basins, which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. Starting from the Jurassic, a within-plate regional extension occurred, forming a series of Jurassic-Paleogene extensional basins in the peneplaned Tianshan region. Since the Neogene, a collision event between the Indian and the Eurasian plates that took place on the southern side of the Tianshan belt has caused a strong intra-continental orogeny, which is characterized by thrusting and folding. Extremely thick coarse conglomerate and sandy conglomerate of the Xiyu Formation of Neogene System were accumulated unconformably on the Tianshan piedmont. Studies have revealed that the strong compression caused by the Indian-Eurasian collision had a profound influence over the orogenic belt in the hinterland, and MesozoiC-Cenozoic brittle deformed structures superposed on the ductile deformed Paleozoic rocks. The Mesozoic extensional basins were converted into Cenozoic compressional basins. The deformation in the basins is featured by step thrusts and fault-related folds. Statistics of joints show that the principal compressive stress since the Neogene is in a N-S direction. Meanwhile, owing to the underthrusting of the basin toward the orogenic belt, the Paleozoic strata were thrust on the Meso-Cenozoic rocks as tectonic slices, revealing distinct kinematic features in different geologic units. The basin-range coupling zones are characterized by intensive compression, folding and thrusting, accompanied by local sub-E-W-trending strike-slip faults. In the Tianshan region, Cenozoic thrusting is the most common basin-range coupling mode. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.
基金the Program of China Geological Survey(grant No.1212011220649)
文摘This work carried out systematic geological field investigation, petrography observation, zircon geochronology and whole rock geochemistry on Late Paleozoic intrusions in the Xingxingxia region near the Xinjiang-Gansu provincial boundary, western China, aiming to constrain the Late Paleozoic tectonic framework of the Xingxingxia region and the final closure time of South Tianshan Ocean in the East Tianshan. The Xingxingxia area is located in the east part of the Tianshan orogen, and adjacent to the north of the Tarim Basin. The Late Paleozoic magma activities in the Xingxingxia region can be mainly divided into three stages. The first stage includes intrusive magma activities under a collision setting between Late Ordovician to the Late Devonian. The second stage is intrusive magma activities under a subduction setting during(304±3)–(278±3) Ma, and the third stage involves intrusive magma activities under a collision and post-collision setting during(268±5)–(259.9±2.6) Ma. The final suture zone of South Tianshan Ocean should be between the Central Tianshan Block and South Tianshan accretionary complex. Based on previous work, both the first stage magma activities(i.e., intrusive magmatic activities between the Late Ordovician to Late Devonian) and the Hongliuhe ophiolitic complex indicate a close event between Central Tianshan Block and South Tianshan Accretionary Complex. The 304±3 Ma dioritic metamorphic gneiss of the XingX ingxia complex and the 278±3 Ma diorite are all island arc calc-alkaline rocks, the 289±3 Ma gabbro is island arc tholeiitic gabbro formed by magma from metasomatic enrichment mantle. All these results indicate that the second stage of magmatic activities is under a subduction setting. The third stage magma activities i.e. the granitic magma activities of(268±5)–(259.9±2.6) Ma occurred at a transitional setting from compressional to post-collision extensional tectonic setting. Thus, around(268±5)–(260±3) Ma, the final closure of the South Tianshan Ocean occurred and the Tianshan orogen shifted into the intracontinental evolution stage. During and after the closure process, a wide range of metamorphism and large dextral strike-slip faults developed.
基金financially supported by the National Natural Science Foundation of China(41761014,42161025,42101096)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20020201)the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University,and the Excellent Platform of Lanzhou Jiaotong University。
文摘In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology.
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.