The temporal and spatial variation on the stable isotopic compositions in precipitation and the relationship with temperature,precipitation and vapor sources are analyzed for the Tibetan Plateau and its adjacent regio...The temporal and spatial variation on the stable isotopic compositions in precipitation and the relationship with temperature,precipitation and vapor sources are analyzed for the Tibetan Plateau and its adjacent regions.There is no temperature effect in the southern Tibetan Plateau and South Asia.Amount effect has been observed at a few sampling stations that account for about a half of the statistical stations.However,the seasonal variations on the stable isotopic compositions in precipitation at those stations are inconsistent with that of precipitation intensity.There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Northwest China.It has been observed that the seasonal variations of the δ^(18)O in precipitation are almost consistent with those of air temperature in these regions.Because vapor is directly originated from low- latitude oceans,the relative heavy δ^(18)O with small variation characterizes the rainfall in South Asia.A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slop of the Himalayas to the Tanggula Mountains in the middle Plateau. The δ^(18)O reaches minimum due to very strong rainout of the vapor from oceans as the vapor rises over the Himalayas.From the Tanggula Mountains to the northern Tibetan Plateau,the δ^(18)O in precipitation increases with increasing latitude and the isotopic situation in the northern Plateau is transferred into Northwest China with little disruption.展开更多
There is no temperature effect in the southern Tibetan Plateau and South Asia to the south of the Tanggula Mountains. Amount effect has been observed at a few sampling stations accounting for about a half of the stati...There is no temperature effect in the southern Tibetan Plateau and South Asia to the south of the Tanggula Mountains. Amount effect has been observed at a few sampling stations accounting for about a half of the statistical stations. There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Central Asia to the north of the Tanggula Mountains. Because vapor directly originates from low-latitude oceans, the relative heavy ( 18O with small variation characterizes the rainfall in South Asia. A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slope of the Himalayas to the Tanggula Mountains in the middle plateau. From the Tanggula Mountains to the northern Tibetan Plateau, the ( 18O in precipitation increases with increasing latitude.展开更多
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the E...The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.展开更多
正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8...正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.展开更多
A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of...A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of black carbon(BC) on temperature and snow cover over the Tibetan Plateau(TP) in 1990-2009. Two experiments driven by ERA-interim reanalysis were performed, i.e., with and without aerosol-snow/ice feedback. Results indicated that the total deposition BC and organic matter(OM) in snow/ice in the monsoon season(MayeS eptember) were much more than non-monsoon season(the remainder of the year). The great BC and OM deposition were simulated along the margin of the TP in the non-monsoon season, and the higher deposition values also occurred in the western TP than the other regions during the monsoon period. BC-in-snow/ice decreased surface albedo and caused positive surface radiative forcing(SRF)(3.0-4.5 W m^(-2)) over the western TP in the monsoon season. The maximum SRF(5-6 W m^(-2)) simulated in the Himalayas and southeastern TP in the non-monsoon season. The surface temperature increased by 0.1-1.5℃ and snow water equivalent decreased by 5-25 mm over the TP, which showed similar spatial distributions with the variations of SRF in each season. This study provided a useful tool to investigate the mechanisms involved in the effect of aerosols on climate change and the water cycle in the cryospheric environment of the TP.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (...Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.展开更多
In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape...In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.展开更多
Early Miocene stratigraphy,major structural systems,magmatic emplacement,volcanic eruption,vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1...Early Miocene stratigraphy,major structural systems,magmatic emplacement,volcanic eruption,vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches,revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision.Lacustrine deposits of dolostone,dolomite limestone,limestone,marl,sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau,indicating that vast lake complexes as large as 100,000-120,000 km2 existed in the central plateau during Early Miocene.Sporopoilen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needle-leaved trees during Early Miocene.Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca.4,000-4,500 m and the northeastern plateau uplifted to ca.3,500-4,000 m before the Early Miocene.Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene,formed Gangdise Thrust System (GTS) in the southern Lhasa block,Zedong-Renbu Thrust (ZRT) in the northern Himalaya block,Main Central Thrust (MCT) and Main Boundary Thrust (MBT) in the southern Himalaya block,and regional thrust systems in the Qaidam,Qilian,West Kunlun and Songpan-Ganzi blocks.Foreland basins formed in Early Miocene along major thrust systems,e.g.the Siwalik basin along MCT,Yalung-Zangbu Basin along GTS and ZRT,southwestern Tarim depression along West Kunlun Thrust,and large foreland basins along major thrust systems in the northeastern margin of the plateau.Intensive volcanic eruptions formed in the Qiangtang,Hoh-Xil and Kunlun blocks,porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts.,and leucogranites and granites formed in the Himalaya and Longmenshan Mts.in Early Miocene.The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts.are found to increase with distance from the MBT,indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.展开更多
The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to Dec...The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to December 2014.The annual mean aerosol optical depth(AOD)was 0.35±0.23,and the?ngstr?m exponent was 1.0±0.38.The AOD exhibited higher values in summer and winter,but lower values in spring and autumn.Dividing the observational periods into dry and wet seasons,the authors found that the concentrations of K^+,elemental carbon,secondary inorganic aerosols,and primary and secondary organic carbon in the dry(wet)season were 0.29(0.21),0.88(0.60),7.4(4.5),7.5(5.1),and 3.9(12)μg m?3,respectively.Combined with trajectory analysis,the authors found that higher concentrations of K^+,elemental carbon,and primary organic carbon indicated the effects of biomass burning from Southeast Asia during the dry season.However,the oxidation of volatile organic compounds was the main source of aerosols during the wet season,which originated from the Sichuan Basin.展开更多
This study was based on the CEOP/CAMP-Tibet observed data at AWS (Automatic Weather Station) of MS3478 in the seasonal frozen soil region of northern Tibetan Plateau from March 2007 to February 2008. The variation c...This study was based on the CEOP/CAMP-Tibet observed data at AWS (Automatic Weather Station) of MS3478 in the seasonal frozen soil region of northern Tibetan Plateau from March 2007 to February 2008. The variation characteristics of PE (potential evapotransph'ation) were analyzed based on the Penman-Monteith method recommended by FAO (the Food and Agriculture Organization of the United Na- lions). The contributions of dynamic, thermal and water factors to PE were discussed, and the wet-dry condition of the plateau region was further studied. The results indicated that daily PE was between 0.52 mm and 6.46 mm for the whole year. Monthly PE was over 107 mm from May to September, but decreased to less than 41 mm from November to February. Annual PE was 1,037.8mm. In the summer, thermal PE was significantly more than dynamic PE, but conversely in the winter. Annual variation of thermal PE was of sine wave pattern. In addition, drought and semi-drought climate lasted for a long time while semi-humid climate was short. The effect of water and dynamic factors on PE varied considerably with the seasons. Annual variation of thermal PE was of sine wave pattern.展开更多
Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal sh...Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal shielding and static correction of permafrost make the quality of seismic data is not ideal,the signal to noise ratio(SNR)is low,and deep target horizon imaging is difficult.These data cannot provide high quality information for oil and gas geological survey and structural sedimentary research in the area.To solve the issue of seismic exploration in Tibetan Plateau,this test used low frequency vibroseis wide-line and high-density acquisition scheme.In view of the actual situation of the study area,the terrain,the source and the diff erent observation system were simulated,and the processing technique was adopted to improve the quality of seismic data.Low-frequency components with a minimum of 1.5Hz of vibroseis ensure the deep geological target imaging quality in the area,the seismic profi le wave group is clear,and the SNR is relatively high,which can meet the needs of oil and gas exploration.Seismic data can provide the support for the development of oil and gas survey in the Tibet plateau.展开更多
Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The ...Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.展开更多
The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but ...The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but the existing studies on the topic have been limited by the lack of socioeconomic data.This study aims to quantify the urbanization level on the TP in 2018 with Luojia1-01(LJ1-01)high-resolution nighttime light(NTL)data.Specifically,the compounded night light index is used to quantify spatial patterns of urbanization level at mul-tiple scales.The results showed that the TP had a low overall urbanization level with a large internal difference.The urbanization level in the northeast,southeast and south of the TP was relatively high,forming three hotspots centered in Xining City,Lhasa City and Shangri-La City,while the urbanization level in the central and western regions was relatively low.The analysis of influencing factors,based on the random forest model,showed that transportation and topography were the main factors affecting the TP’s spatial patterns of urbanization level.The comparison analysis with socioeconomic statistics and traditional NTL data showed that LJ1-01 NTL data can be used to more effectively quantify the urbanization level since it is more advantageous for reflecting the spatial extent of urban land and describing the spatial structure of socioeconomic activities within urban areas.These advantages are attributed to the high spatial resolution of the data,appropriate imaging time and unaf-fected by saturation phenomena.Thus,the proposed LJ1-01 NTL-based urbanization level measurement method has the potential for wide applications around the world,especially in less-developed regions lacking statistical data.Using this method,we refined the measurement of the TP’s urbanization level in 2018 for multiple scales including the region,basin,prefecture and county levels,which provides basic information for the further urban sustainability research on the TP.展开更多
We use broadband records from a dense seismic network deployed in and around the Qaidam Basin in northwestern China to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities as wel...We use broadband records from a dense seismic network deployed in and around the Qaidam Basin in northwestern China to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities as well as the P-wave velocity.Waveform cross-correlation is used to assist in the identification of the crustal phases and in determining their arrival times.Depth of the Conrad discontinuity is determined by fitting the travel times of Conrad-diffracted P-waves using a two-layer model.The depth of the Conrad discontinuity under the eastern part of the basin is shallower than the western part,which can be attributed to different crustal shortening mechanisms.The upper crust shortening in the western part of the basin leads to thickening of the upper crust,while multiple thrust faults result in the rise of the Conrad discontinuity in the east.These two different mechanisms determine the depth change of the Conrad discontinuity in the basin from the west to the east,which is supported by the results in this study.展开更多
The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study ...The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study area.The vegetation distribution was mapped in 1994 and 2007 based on TM remote sensing images by object-oriented interpretation method.We overlaid the two maps to find out the vegetation patches which have not changed,and took them as stable types.Fifty per cent of the stable patches were randomly sampled to operate the logistic regression with related environmental parameters;others were used as test data of simulated results.Seven environmental parameters were mapped,including elevation,slope,aspect,surface curvature,solar radiation,temperature and precipitation,based on DEM data and meteorological site data by GIS technology.The relationship between the spatial distribution of vegetation and environmental variables were quantified by logistic regression.The distribution probabilities of each vegetation type were calculated.Finally,the spatial distribution of potential vegetation was simulated.This research can provide a scientific basis for vegetation restoration and ecological construction in this area.展开更多
A large number of Eocene-Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau.In this study,we present zircon U-Pb ages,Hf isotope data,and major and trace ...A large number of Eocene-Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau.In this study,we present zircon U-Pb ages,Hf isotope data,and major and trace element compositions of the Cenozoic alkaline rocks from the Tuotuohe region in order to constraint the petrogenesis and tectonic evolution history of Qiangtang Block.Zircon U-Pb ages were measured via LA-ICP-MS to be39.6,37.6 and 32.0 Ma.The 39.6 Ma trachyte was characterized by low SiO2 and high K2O and MgO contents.The 37.6 and 32.0 Ma orthophyres show enrichment in SiO2 and K2O,but deficient in MgO.All of the samples belong to the alkaline rocks.These rocks display enrichment in REE,LREE,and LILE,depletion in HFSE,and no obvious Eu anomalies.Geological and geochemical features suggest that there were two possible mechanisms for the origin of the alkaline rocks in the Tuotuohe region:(1)the removed mafic lower crust dropped into the asthenosphere,forming the mix magma(Nariniya trachyte);(2)the upwelling asthenosphere triggered the crustal melting(Nariniya and Zamaqu orthophyre).The Eocene-Oligocene alkaline rocks in the study and adjacent areas are likely to be the result of the same tectonic-magmatic event of deep lithospheric evolution that is the crustal material melting triggered by lithospheric delamination.This conclusion extends the influence scope of lithospheric delamination eastward to the Tuotuohe region(*92°E)from Banda Co(*82°E).展开更多
Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot...Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.展开更多
The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the...The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%―51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.展开更多
The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization....The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization. All of the intrusions that intrude the dolomite or shales of the Mesoproterozoic Heishan Formation of the Huili Group are composed of three cyclic units from the base upward: a marginal cyclic unit, a lower cyclic unit and an upper cyclic unit. The Fe–Ti–V oxide ore bodies are hosted in the lower and upper cyclic units. The textural relationships between minerals in the intrusions suggest that titanomagnetite formed earlier than silicate grains because euhedral magnetite and ilmenite grains were enclosed in clinopyroxene and plagioclase. Both the magnetitess–ilmenitess intergrowths due to subsolidus oxidation–exsolutions and the relative higher V distribution coefficient between magnetite and silicate melts in the gabbros from the Zhuqing area are different from those of other typical Fe–Ti bearing mafic rocks, suggesting that the oxygen fugacity was low in the gabbric rocks from the Zhuqing area. This finding was further confirmed by calculations based on the compositions of magnetite and ilmenite pairs. The clinopyroxene, magnetite and ilmenite in the intrusions from the Zhuqing area had considerably lower Mg O than those of other typical Fe–Ti oxide-rich complexes, suggesting that the titanomagnetite from the intrusion may have crystallized at a relatively late stage of evolution from a more evolved magma. Titanomagnetite first fractionally crystallized and subsequently settled in the lower parts of the magma chamber, where it concentrated and formed Fe–Ti–V oxide ore layers at the bases of the lower and upper cycles. Moreover, the occurrence of multiple Fe-Ti oxide layers alternating with Fe-Ti oxide-bearing silicate layers suggests that multiple pulses of magma were involved in the formation of the intrusions and related Fe-Ti-V oxide deposits in the Zhuqing area.展开更多
基金National Key Research Project(Grant No.G1998040802)LICCRE Program(Grant No.BX2001-03)
文摘The temporal and spatial variation on the stable isotopic compositions in precipitation and the relationship with temperature,precipitation and vapor sources are analyzed for the Tibetan Plateau and its adjacent regions.There is no temperature effect in the southern Tibetan Plateau and South Asia.Amount effect has been observed at a few sampling stations that account for about a half of the statistical stations.However,the seasonal variations on the stable isotopic compositions in precipitation at those stations are inconsistent with that of precipitation intensity.There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Northwest China.It has been observed that the seasonal variations of the δ^(18)O in precipitation are almost consistent with those of air temperature in these regions.Because vapor is directly originated from low- latitude oceans,the relative heavy δ^(18)O with small variation characterizes the rainfall in South Asia.A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slop of the Himalayas to the Tanggula Mountains in the middle Plateau. The δ^(18)O reaches minimum due to very strong rainout of the vapor from oceans as the vapor rises over the Himalayas.From the Tanggula Mountains to the northern Tibetan Plateau,the δ^(18)O in precipitation increases with increasing latitude and the isotopic situation in the northern Plateau is transferred into Northwest China with little disruption.
基金This work was supported by the National Key Research Project (Grant No. 1998040802) the CASKnowledge Innovation Program (Grant No. KZCX2-301), CAREERI Foundation (Grant No. TZ2000-02) and LICCRE Program (Grant No. BX2001-3).
文摘There is no temperature effect in the southern Tibetan Plateau and South Asia to the south of the Tanggula Mountains. Amount effect has been observed at a few sampling stations accounting for about a half of the statistical stations. There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Central Asia to the north of the Tanggula Mountains. Because vapor directly originates from low-latitude oceans, the relative heavy ( 18O with small variation characterizes the rainfall in South Asia. A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slope of the Himalayas to the Tanggula Mountains in the middle plateau. From the Tanggula Mountains to the northern Tibetan Plateau, the ( 18O in precipitation increases with increasing latitude.
基金supported by a geological survey project of the China Geological Survey (No.1212011140013, No.12120113009800)
文摘The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.
基金supported by the National Natural Science Foundation of China,under the project entitled“The study of land-atmosphere water and heat flux interaction over the complex terrain of the north and south slopes of the Qomolangma region"[grant number 42230610]a Ministry of Science and Technology of China project called“Landatmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program"[grant number 2019QzKK0103]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[2022069].
文摘正确认识不同区域能量和水分循环特征是研究局地地气相互作用及准确预测区域天气,气候变化的关键.为了研究属于干旱/半干旱气候的青藏高原(TP)和湿润/半湿润气候的长江流域(YRR)之间地表能量和水分交换的异同,本文对比分析了两个区域8个不同地表类型(包括高山荒漠,高山草地,(平原)城市和(平原)草地等)观测站点的地表辐射和能量通量数据.结果显示:(1)TP由于高原大气层稀薄且空气洁净,年平均入射短波辐射为251.3W m^(-2),是YRR的1.7倍.加之高原地表反照率高导致反射辐射(59.6 W m^(-2))是YRR的2.87倍.入射及出射的长波辐射为231.5和338.0 W m^(-2),分别为YRR的0.64和0.83.而两个区域的净辐射差异不大;(2)草地站更多的潜热释放使得地表总加热效率高于城市和高山荒漠,TP和YRR的草地站的年平均潜热分别为35.0和38.8 W m^(-2),而植被稀疏且土壤干燥的高山荒漠地区感热最大,年平均感热为42.1 W m^(-2);其次是城市下垫面,其年平均感热为37.7 W m^(-2).研究结果揭示了不同气候背景下典型下垫面地气相互作用特征,为地气相互作用过程深入分析奠定了基础.
基金supported by National Nature Science Foundation of China (41301061)Chinese Academy of Sciences (KJZD-EW-G03-04)China Meteorological Administration Special Public Welfare Research Fund (GYHY201306019)
文摘A regional climate model(RegCM4.3.4) coupled with an aerosol-snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of black carbon(BC) on temperature and snow cover over the Tibetan Plateau(TP) in 1990-2009. Two experiments driven by ERA-interim reanalysis were performed, i.e., with and without aerosol-snow/ice feedback. Results indicated that the total deposition BC and organic matter(OM) in snow/ice in the monsoon season(MayeS eptember) were much more than non-monsoon season(the remainder of the year). The great BC and OM deposition were simulated along the margin of the TP in the non-monsoon season, and the higher deposition values also occurred in the western TP than the other regions during the monsoon period. BC-in-snow/ice decreased surface albedo and caused positive surface radiative forcing(SRF)(3.0-4.5 W m^(-2)) over the western TP in the monsoon season. The maximum SRF(5-6 W m^(-2)) simulated in the Himalayas and southeastern TP in the non-monsoon season. The surface temperature increased by 0.1-1.5℃ and snow water equivalent decreased by 5-25 mm over the TP, which showed similar spatial distributions with the variations of SRF in each season. This study provided a useful tool to investigate the mechanisms involved in the effect of aerosols on climate change and the water cycle in the cryospheric environment of the TP.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
基金supported by the National Natural Science Foundation of China (40601056, 40121101)the Special Funds for Major State Basic Research Project (2009CB723901)+4 种基金the Special Science Foundation on Meteorological Project Research for Public Benefit (GYHY(QX)2007-6-18)the Survey Project on Glacier resources and their changes in China (No.2006FY110200)the Opening Fund projects of State Key Laboratory of Remote Sensing Science in the Institute of Remote Sensing Applicationsthe innovative project of Institute of Tibetan Plateau Research (ITPR),CASthrough a cooperation project between the Climate Change Institute, University of Maine supported by the National Oceanic and Atmospheric Administration (NA04OAR4600179) and the Institute of Tibetan Plateau Research (ITPR), CAS
文摘Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.
基金performed under the auspices of the Chinese National Key Programme for Developing Basic Sciences (Grant No. 2010CB951701)the Innovation Projects of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)+1 种基金the National Natural Science Foundation of China (Grant Nos. 40825015and 40810059006)EU-FP7 project "CEOP-AEGIS"(Grant No. 212921)
文摘In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.
基金supported by the China Geological Survey under grants Nos.1212011120185 and 1212011221111the Ministry of Science and Technology of China under grant 2006DFB21330
文摘Early Miocene stratigraphy,major structural systems,magmatic emplacement,volcanic eruption,vegetation change and paleo-elevation were analyzed for the Tibetan Plateau after regional geological mapping at a scale of 1:250,000 and related researches,revealing much more information for tectonic evolution and topographic change of the high plateau caused by Indian-Asian continental collision.Lacustrine deposits of dolostone,dolomite limestone,limestone,marl,sandstone and conglomerate of weak deformation formed extensively in the central Tibetan Plateau,indicating that vast lake complexes as large as 100,000-120,000 km2 existed in the central plateau during Early Miocene.Sporopoilen assemblages contained in the lacustrine strata indicate the disappearance of most tropical-subtropical broad-leaved trees since Early Miocene and the flourishing of dark needle-leaved trees during Early Miocene.Such vegetation changes adjusted for latitude and global climate variations demonstrate that the central Tibetan Plateau rose to ca.4,000-4,500 m and the northeastern plateau uplifted to ca.3,500-4,000 m before the Early Miocene.Intensive thrust and crustal thickening occurred in the areas surrounding central Tibetan Plateau in Early Miocene,formed Gangdise Thrust System (GTS) in the southern Lhasa block,Zedong-Renbu Thrust (ZRT) in the northern Himalaya block,Main Central Thrust (MCT) and Main Boundary Thrust (MBT) in the southern Himalaya block,and regional thrust systems in the Qaidam,Qilian,West Kunlun and Songpan-Ganzi blocks.Foreland basins formed in Early Miocene along major thrust systems,e.g.the Siwalik basin along MCT,Yalung-Zangbu Basin along GTS and ZRT,southwestern Tarim depression along West Kunlun Thrust,and large foreland basins along major thrust systems in the northeastern margin of the plateau.Intensive volcanic eruptions formed in the Qiangtang,Hoh-Xil and Kunlun blocks,porphyry granites and volcanic eruptions formed in the Nainqentanglha and Gangdise Mts.,and leucogranites and granites formed in the Himalaya and Longmenshan Mts.in Early Miocene.The K2O weight percentages of Early Miocene magmatic rocks in the Gangdise and Himlayan Mts.are found to increase with distance from the MBT,indicating the genetic relationship between regional magmatism and subduction of Indian continental plate in Early Miocene.
基金supported by the National Basic Research Program of China[grant numbers 2016YFC0202001 and 973Program 2014CB441200]the National Natural Science Foundation of China[grant numbers 41375036 and41305076]
文摘The aerosol optical properties and chemical components of PM2.1(particulate matter with a diameter of 2.1μm or less)were investigated at Mount Gongga on the eastern slope of the Tibetan Plateau from April 2012 to December 2014.The annual mean aerosol optical depth(AOD)was 0.35±0.23,and the?ngstr?m exponent was 1.0±0.38.The AOD exhibited higher values in summer and winter,but lower values in spring and autumn.Dividing the observational periods into dry and wet seasons,the authors found that the concentrations of K^+,elemental carbon,secondary inorganic aerosols,and primary and secondary organic carbon in the dry(wet)season were 0.29(0.21),0.88(0.60),7.4(4.5),7.5(5.1),and 3.9(12)μg m?3,respectively.Combined with trajectory analysis,the authors found that higher concentrations of K^+,elemental carbon,and primary organic carbon indicated the effects of biomass burning from Southeast Asia during the dry season.However,the oxidation of volatile organic compounds was the main source of aerosols during the wet season,which originated from the Sichuan Basin.
基金the funding received from the National Key Programme for Developing Basic Sciences of China (2010CB951701)Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-01)+3 种基金Natural Science Foundation of China (40875005)Natural Science Foundation of China for International Cooperation (40810059006)European Commission CEOP-AEGIS (Call FP7-ENV-2007-1 Grant No. 212921)Gansu Science and Technology Key Project (1001JKDA001)
文摘This study was based on the CEOP/CAMP-Tibet observed data at AWS (Automatic Weather Station) of MS3478 in the seasonal frozen soil region of northern Tibetan Plateau from March 2007 to February 2008. The variation characteristics of PE (potential evapotransph'ation) were analyzed based on the Penman-Monteith method recommended by FAO (the Food and Agriculture Organization of the United Na- lions). The contributions of dynamic, thermal and water factors to PE were discussed, and the wet-dry condition of the plateau region was further studied. The results indicated that daily PE was between 0.52 mm and 6.46 mm for the whole year. Monthly PE was over 107 mm from May to September, but decreased to less than 41 mm from November to February. Annual PE was 1,037.8mm. In the summer, thermal PE was significantly more than dynamic PE, but conversely in the winter. Annual variation of thermal PE was of sine wave pattern. In addition, drought and semi-drought climate lasted for a long time while semi-humid climate was short. The effect of water and dynamic factors on PE varied considerably with the seasons. Annual variation of thermal PE was of sine wave pattern.
基金This work was supported by Nation key R&D program(No.2016YFC060110305)Geological and mineral investigation and evaluation special project(No.DD20160160 and No.DD20160181).
文摘Few seismic exploration work was carried out in Tibetan Plateau due to the characteristics of alpine hypoxia and harsh environmental protection needs.Complex near surface geological conditions,especially the signal shielding and static correction of permafrost make the quality of seismic data is not ideal,the signal to noise ratio(SNR)is low,and deep target horizon imaging is difficult.These data cannot provide high quality information for oil and gas geological survey and structural sedimentary research in the area.To solve the issue of seismic exploration in Tibetan Plateau,this test used low frequency vibroseis wide-line and high-density acquisition scheme.In view of the actual situation of the study area,the terrain,the source and the diff erent observation system were simulated,and the processing technique was adopted to improve the quality of seismic data.Low-frequency components with a minimum of 1.5Hz of vibroseis ensure the deep geological target imaging quality in the area,the seismic profi le wave group is clear,and the SNR is relatively high,which can meet the needs of oil and gas exploration.Seismic data can provide the support for the development of oil and gas survey in the Tibet plateau.
文摘Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.
基金the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405)the National Natural Science Foundation of China(Grant No.41871185&41971270)。
文摘The Tibetan Plateau(TP)is undergoing rapid urbanization.To improve urban sustainability and construct eco-logical security barriers,it is essential to quantify the spatial patterns of urbanization level on the TP,but the existing studies on the topic have been limited by the lack of socioeconomic data.This study aims to quantify the urbanization level on the TP in 2018 with Luojia1-01(LJ1-01)high-resolution nighttime light(NTL)data.Specifically,the compounded night light index is used to quantify spatial patterns of urbanization level at mul-tiple scales.The results showed that the TP had a low overall urbanization level with a large internal difference.The urbanization level in the northeast,southeast and south of the TP was relatively high,forming three hotspots centered in Xining City,Lhasa City and Shangri-La City,while the urbanization level in the central and western regions was relatively low.The analysis of influencing factors,based on the random forest model,showed that transportation and topography were the main factors affecting the TP’s spatial patterns of urbanization level.The comparison analysis with socioeconomic statistics and traditional NTL data showed that LJ1-01 NTL data can be used to more effectively quantify the urbanization level since it is more advantageous for reflecting the spatial extent of urban land and describing the spatial structure of socioeconomic activities within urban areas.These advantages are attributed to the high spatial resolution of the data,appropriate imaging time and unaf-fected by saturation phenomena.Thus,the proposed LJ1-01 NTL-based urbanization level measurement method has the potential for wide applications around the world,especially in less-developed regions lacking statistical data.Using this method,we refined the measurement of the TP’s urbanization level in 2018 for multiple scales including the region,basin,prefecture and county levels,which provides basic information for the further urban sustainability research on the TP.
基金supported by the National Natural Science Foundation of China(Grant Number 41930103,41674052).
文摘We use broadband records from a dense seismic network deployed in and around the Qaidam Basin in northwestern China to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities as well as the P-wave velocity.Waveform cross-correlation is used to assist in the identification of the crustal phases and in determining their arrival times.Depth of the Conrad discontinuity is determined by fitting the travel times of Conrad-diffracted P-waves using a two-layer model.The depth of the Conrad discontinuity under the eastern part of the basin is shallower than the western part,which can be attributed to different crustal shortening mechanisms.The upper crust shortening in the western part of the basin leads to thickening of the upper crust,while multiple thrust faults result in the rise of the Conrad discontinuity in the east.These two different mechanisms determine the depth change of the Conrad discontinuity in the basin from the west to the east,which is supported by the results in this study.
基金The National Key Technology Research and Development ProgramExternal Cooperation Program of the Chinese Academy of Sciences[grant number GJHZ0954]+1 种基金National Basic Research Program of China[grant number 2005CB422006]National Natural Science Foundation of China[grant number 40901057]
文摘The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study area.The vegetation distribution was mapped in 1994 and 2007 based on TM remote sensing images by object-oriented interpretation method.We overlaid the two maps to find out the vegetation patches which have not changed,and took them as stable types.Fifty per cent of the stable patches were randomly sampled to operate the logistic regression with related environmental parameters;others were used as test data of simulated results.Seven environmental parameters were mapped,including elevation,slope,aspect,surface curvature,solar radiation,temperature and precipitation,based on DEM data and meteorological site data by GIS technology.The relationship between the spatial distribution of vegetation and environmental variables were quantified by logistic regression.The distribution probabilities of each vegetation type were calculated.Finally,the spatial distribution of potential vegetation was simulated.This research can provide a scientific basis for vegetation restoration and ecological construction in this area.
基金supported by Dr. Huo Liang, College of Earth Science, Jilin Universitysupported by colleagues in Qinghai Geological Survey+1 种基金the Qinghai Fifth Geological and Mineral Exploration Institutefunded by the National Natural Science Foundation of China (Grant No. 41402060)
文摘A large number of Eocene-Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau.In this study,we present zircon U-Pb ages,Hf isotope data,and major and trace element compositions of the Cenozoic alkaline rocks from the Tuotuohe region in order to constraint the petrogenesis and tectonic evolution history of Qiangtang Block.Zircon U-Pb ages were measured via LA-ICP-MS to be39.6,37.6 and 32.0 Ma.The 39.6 Ma trachyte was characterized by low SiO2 and high K2O and MgO contents.The 37.6 and 32.0 Ma orthophyres show enrichment in SiO2 and K2O,but deficient in MgO.All of the samples belong to the alkaline rocks.These rocks display enrichment in REE,LREE,and LILE,depletion in HFSE,and no obvious Eu anomalies.Geological and geochemical features suggest that there were two possible mechanisms for the origin of the alkaline rocks in the Tuotuohe region:(1)the removed mafic lower crust dropped into the asthenosphere,forming the mix magma(Nariniya trachyte);(2)the upwelling asthenosphere triggered the crustal melting(Nariniya and Zamaqu orthophyre).The Eocene-Oligocene alkaline rocks in the study and adjacent areas are likely to be the result of the same tectonic-magmatic event of deep lithospheric evolution that is the crustal material melting triggered by lithospheric delamination.This conclusion extends the influence scope of lithospheric delamination eastward to the Tuotuohe region(*92°E)from Banda Co(*82°E).
基金supported by the National Natural Science Foundations of China (Grant Nos. 41930759, 41822501, 42075089, 41975014)the 2nd Scientific Expedition to the Qinghai-Tibet Plateau (2019QZKK0102)+3 种基金The Science and Technology Research Plan of Gansu Province (20JR10RA070)the Chinese Academy of Youth Innovation and Promotion, CAS (Y201874)the Youth Innovation Promotion Association CAS (QCH2019004)iLEAPs (Integrated Land Ecosystem-Atmosphere Processes Study-iLEAPS)。
文摘Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank.
基金Supported jointly by the National Natural Science Foundation of China (Grant Nos. 40572050 and 40234041) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China
文摘The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%―51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.
基金supported by the National Natural Science Foundation of China(Grants 41403044,41273049,41572074)
文摘The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization. All of the intrusions that intrude the dolomite or shales of the Mesoproterozoic Heishan Formation of the Huili Group are composed of three cyclic units from the base upward: a marginal cyclic unit, a lower cyclic unit and an upper cyclic unit. The Fe–Ti–V oxide ore bodies are hosted in the lower and upper cyclic units. The textural relationships between minerals in the intrusions suggest that titanomagnetite formed earlier than silicate grains because euhedral magnetite and ilmenite grains were enclosed in clinopyroxene and plagioclase. Both the magnetitess–ilmenitess intergrowths due to subsolidus oxidation–exsolutions and the relative higher V distribution coefficient between magnetite and silicate melts in the gabbros from the Zhuqing area are different from those of other typical Fe–Ti bearing mafic rocks, suggesting that the oxygen fugacity was low in the gabbric rocks from the Zhuqing area. This finding was further confirmed by calculations based on the compositions of magnetite and ilmenite pairs. The clinopyroxene, magnetite and ilmenite in the intrusions from the Zhuqing area had considerably lower Mg O than those of other typical Fe–Ti oxide-rich complexes, suggesting that the titanomagnetite from the intrusion may have crystallized at a relatively late stage of evolution from a more evolved magma. Titanomagnetite first fractionally crystallized and subsequently settled in the lower parts of the magma chamber, where it concentrated and formed Fe–Ti–V oxide ore layers at the bases of the lower and upper cycles. Moreover, the occurrence of multiple Fe-Ti oxide layers alternating with Fe-Ti oxide-bearing silicate layers suggests that multiple pulses of magma were involved in the formation of the intrusions and related Fe-Ti-V oxide deposits in the Zhuqing area.