期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer 被引量:5
1
作者 ChuANDong ZHU Rongcai REN Guoxiong WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第9期1114-1128,共15页
This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that th... This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events. 展开更多
关键词 tibetan plateau upper atmospheric heat source Rossby wave train circulation and weather
下载PDF
The Impact of Atmospheric Heat Sources over the Eastern Tibetan Plateau and the Tropical Western Pacific on the Summer Rainfall over the Yangtze-River Basin 被引量:16
2
作者 简茂球 乔云亭 +1 位作者 袁卓建 罗会邦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第1期149-155,共7页
The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in Chin... The variability of the summer rainfall over China is analyzed using the EOF procedure with a new parameter (namely, mode station variance percentage) based on 1951-2000 summer rainfall data from 160 stations in China. Compared with mode variance friction, the mode station variance percentage not only reveals more localized characteristics of the variability of the summer rainfall, but also helps to distinguish the regions with a high degree of dominant EOF modes representing the analyzed observational variable. The atmospheric circulation diagnostic studies with the NCEP/NCAR reanalysis daily data from 1966 to 2000 show that in summer, abundant (scarce) rainfall in the belt-area from the upper-middle reaches of the Yangtze River northeastward to the Huaihe River basin is linked to strong (weak) heat sources over the eastern Tibetan Plateau, while the abundant (scarce) rainfall in the area to the south of the middle-lower reaches of the Yangtze River is closely linked to the weak (strong) heat sources over the tropical western Pacific. 展开更多
关键词 heat sources eastern tibetan plateau tropical western Pacific summer rainfall Yangtze River basin
下载PDF
Formation and Variation of the Atmospheric Heat Source over the Tibetan Plateau and Its Climate Effects 被引量:11
3
作者 Guoxiong WU Bian HE +2 位作者 Anmin DUAN Yimin LIU Wei YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第10期1169-1184,共16页
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape... To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM. 展开更多
关键词 atmospheric heat source tibetan plateau climate effect uncertainty
下载PDF
Uncertainties in Quantitatively Estimating the Atmospheric Heat Source over the Tibetan Plateau 被引量:8
4
作者 DUAN An-Min WANG Mei-Rong XIAO Zhi-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第1期28-33,共6页
As a huge,intense,and elevated atmospheric heat source(AHS) approaching the mid-troposphere in spring and summer,the Tibetan Plateau(TP) thermal forcing is perceived as an important factor contributing to the formatio... As a huge,intense,and elevated atmospheric heat source(AHS) approaching the mid-troposphere in spring and summer,the Tibetan Plateau(TP) thermal forcing is perceived as an important factor contributing to the formation and variation of the Asian summer monsoon.Despite numerous studies devoted to determine the strength and change of the thermal forcing of the TP on the basis of various data sources and methods,uncertainties remain in quantitative estimation of the AHS and will persist for the following reasons:(1) Routine meteorological stations cover only limited regions and show remarkable spatial inhomogeneity with most distributed in the central and eastern plateau.Moreover,all of these stations are situated at an altitude below 5000 m.Thus,the large area above that elevation is not included in the data.(2) Direct observations on heat fluxes do not exist at most stations,and the sensible heat flux(SHF) is calculated by the bulk formula,in which the drag coefficient for heat is often treated as an empirical constant without considering atmospheric stability and thermal roughness length.(3) Radiation flux derived by satellite remote sensing shows a large discrepancy in the algorithm in data inversion and complex terrain.(4) In reanalysis data,besides the rare observational records employed for data assimilation,model bias in physical processes induces visible errors in producing the diabatic heating fields. 展开更多
关键词 西藏的高原 大气的热来源 数据偏爱 无常
下载PDF
A STUDY ON THE CHARACTERISTICS AND EFFECT OF THE LOW-FREQUENCY OSCILLATION OF THE ATMOSPHERIC HEAT SOURCE OVER THE EASTERN TIBETAN PLATEAU 被引量:2
5
作者 彭玉萍 何金海 +1 位作者 陈隆勋 张博 《Journal of Tropical Meteorology》 SCIE 2014年第1期17-25,共9页
There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat s... There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP. 展开更多
关键词 Qinghai-Tibet plateau atmospheric heat sources low-frequency oscillations wavelet analysis cross spectra
下载PDF
Characteristics of Atmospheric Heat Sources in the Tibetan Plateau-Tropical Indian Ocean Region 被引量:2
6
作者 罗小青 徐建军 +3 位作者 刘春雷 张宇 李凯 巫朗琪 《Journal of Tropical Meteorology》 SCIE 2021年第1期70-80,共11页
Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and d... Investigating the temporal and spatial distributions of the atmospheric heat sources(AHS)over the Tibetan Plateau-Tropical Indian Ocean(TP-TIO)region is of great importance for the understanding of the evolution and development of the South Asian summer monsoon(SASM).This study used the Japanese 55-year Reanalysis(JRA-55)data from 1979 to 2016 and adopted statistical methods to study the characteristics of the AHS between the TP and TIO,and theirs link to the SASM on an interannual scale.The results indicated that the monthly variations of the AHS in the two regions were basically anti-phase,and that the summer AHS in the TP was obviously stronger than that in the TIO.There were strong AHS and atmospheric moisture sink(AMS)centers in both the eastern and western TP in summer.The AHS center in the east was stronger than that in the west,and the AMS centers showed the opposite pattern.In the TIO,a strong AHS center in the northwest-southeast direction was located near 10°S,90°E.Trend analysis showed that summer AHS in the TIO was increasing significantly,especially before 1998,whereas there was a weakening trend in the TP.The difference of the summer AHS between the TP and TIO(hereafter IQ)was used to measure the thermal contrast between the TP and the TIO.The IQ showed an obvious decreasing trend.After 1998,there was a weak thermal contrast between the TP and the TIO,which mainly resulted from the enhanced AHS in the TIO.The land-sea thermal contrast,the TIO Hadley circulation in the southern hemisphere and the SASM circulation all weakened,resulting in abnormal circulation and abnormal precipitation in the Bay of Bengal(BOB). 展开更多
关键词 atmospheric heat sources tibetan plateau Tropical Indian Ocean land-sea thermal contrast
下载PDF
Impacts of the atmospheric apparent heat source over the Tibetan Plateau on summertime ozone vertical distributions over Lhasa
7
作者 Wenjun Liang Zhen Yang +8 位作者 Jiali Luo Hongying Tian Zhixuan Bai Dan Li Qian Li Jinqiang Zhang Haoyue Wang Bian Ba Yang Yang 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第3期66-71,共6页
青藏高原(TP)是一个对气候变化敏感的地区,其上空的臭氧分布影响着青藏高原及其周边地区的大气环境.北半球夏季青藏高原上空臭氧柱总量相对较低的现象,及其时空变化受到广泛关注.本研究利用北半球夏季5年的拉萨上空臭氧的气球测量数据,... 青藏高原(TP)是一个对气候变化敏感的地区,其上空的臭氧分布影响着青藏高原及其周边地区的大气环境.北半球夏季青藏高原上空臭氧柱总量相对较低的现象,及其时空变化受到广泛关注.本研究利用北半球夏季5年的拉萨上空臭氧的气球测量数据,研究高原上空大气视热源(Q1)对臭氧垂直分布的影响并探讨了该过程的机制.结果表明,当TP上空对流层整体的Q1相对较高时,拉萨上空对流层臭氧浓度下降.大气更强的上升运动伴随着TP主体区域上空的Q1的增大.因此,当夏季Q1较高时,由于近地表低浓度臭氧空气向上输送,拉萨上空的对流层臭氧浓度下降. 展开更多
关键词 臭氧 青藏高原 大气视热源 上升运动
下载PDF
The Rossby wave train patterns forced by shallower and deeper Tibetan Plateau atmospheric heat-source in summer in a linear baroclinic model
8
作者 ZHU Chuandong REN Rongcai 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第1期35-40,共6页
观测结果表明,在夏季青藏高原高层大气热源(TPUHS)的发展和衰减阶段(高原热源由浅向深发展),北半球的环流异常表现出不同的Rossby波列型。本研究利用线性斜压模式LBM来探究深浅TPUHS的波列效应。模拟结果表明,深浅TPUHS能强迫出不同的Ro... 观测结果表明,在夏季青藏高原高层大气热源(TPUHS)的发展和衰减阶段(高原热源由浅向深发展),北半球的环流异常表现出不同的Rossby波列型。本研究利用线性斜压模式LBM来探究深浅TPUHS的波列效应。模拟结果表明,深浅TPUHS能强迫出不同的Rossby波列型,而且波列型与观测结果相似。对应浅的TPUHS,Rossby波列型从青藏高原延伸至美国西海岸;而对应深的TPUHS,Rossby波列型从青藏高原延伸至阿拉斯加。 展开更多
关键词 青藏高原高层大气热源 深浅热源 Rossby波列型
下载PDF
ON THE RELATIONSHIPS BETWEEN THE SUMMER RAINFALL IN CHINA AND THE ATMOSPHERIC HEAT SOURCES OVER THE EASTERN TIBETAN PLATEAU AND THE WESTERN PACIFIC WARM POOL
9
作者 简茂球 罗会邦 乔云亭 《Journal of Tropical Meteorology》 SCIE 2004年第2期133-143,共11页
The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis da... The relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool were analyzed comparatively, using the NCEP/NCAR reanalysis daily data. The strong (weak) heat source in summer over the eastern Tibetan Plateau will lead to abundant (scarce) summer rainfall in the Yangtze River basin, and scarce/abundant summer rainfall in the eastern part of Southern China. While the strong (weak) heat source in summer over the western Pacific warm pool will lead to another pattern of abundant (scarce) summer rainfall in the middle-lower reaches of the Yangtze River and scarce (abundant) summer rainfall in Southern China and in the region of northern Jiangsu to southern Shandong. Comparatively, the heat source over the eastern Tibetan Plateau affects a larger area of summer rainfall than the heat source over the western Pacific. In both cases of the heat source anomalies over the eastern Tibetan Plateau and over the western Pacific, there exist EAP-like teleconnection patterns in East Asia. The summer rainfall in China is influenced directly by the abnormal vertical motion, which is related closely to the abnormal heat sources in the atmosphere. The ridge line of the western Pacific High locates far south (north) in summer in the case of strong (weak) heat sources over the two areas mentioned above. 展开更多
关键词 青藏高原东部 大西洋西部 热力资源 夏季暴雨
下载PDF
Structural Variation of an Atmospheric Heat Source over the Qinghai-Xizang Plateau and Its Influence on Precipitation in Northwest China 被引量:8
10
作者 魏娜 巩远发 何金海 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期1027-1041,共15页
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s... NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years. 展开更多
关键词 Qinghai-Xizang plateau atmospheric heat source/sink greater/lesser precipitation years northwest China
下载PDF
EFFECTS OF THE ATMOSPHERIC COLD SOURCE OVER THE TIBETAN PLATEAU ON THE QUASI 4-YEAR OSCILLATION OF OCEAN-ATMOSPHERIC-LAND INTERACTION 被引量:2
11
作者 张博 陈隆勋 +1 位作者 周秀骥 赵滨 《Journal of Tropical Meteorology》 SCIE 2009年第1期20-27,共8页
Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. I... Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high. 展开更多
关键词 青藏高原东部 海洋环流 气相互作用 冷源 大气 西太平洋副热带高压 土地 振荡
下载PDF
Study on the atmospheric heat engine efficiency and heat source characteristics of the Qinghai-Tibet Plateau in summer
12
作者 Yujie LI Xiaoqing GAO +5 位作者 Yaoming MA Zeyong HU Zhenchao LI Liwei YANG Xiao JIN Xiyin ZHOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期117-133,共17页
There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and tr... There are many types of atmospheric heat engines in land-air systems.The accurate definition,calculation and interpretation of the efficiency of atmospheric heat engines are key to understanding energy transfer and transformation of landair systems.The atmosphere over the Qinghai-Tibet Plateau(QTP)in summer can be regarded as a positive heat engine.The study of the heat engine efficiency is helpful to better understand land-air interaction and thermal-dynamic processes on the QTP.It also provides a new perspective to explain the impact of the QTP on the climate of China,East Asia and even the world.In this paper,we used MOD08 and ERA5 reanalysis data to calculate the atmospheric heat engine efficiency,surface heat source and atmospheric heat source on the QTP in summer(May to September)from 2000 to 2020.The average atmospheric heat engine efficiency on the QTP in summer from 2000 to 2020 varies between 1.2%and 1.5%,which is less than 1.6%;the heat engine efficiency in summer is higher than that in June,July and August;the Qaidam Basin is the region with the highest atmospheric heat engine efficiency,followed by the western QTP.The mean surface heat source on the QTP in summer from 2000 to 2020 is 96.0 W m^(−2),the atmospheric heat source is 90.7 W m^(−2),and the release of precipitation condensation latent heat is the most important component of the atmospheric heat source on the QTP in summer.There is a strong and significant positive correlation between the atmospheric heat engine efficiency and the surface heat source on the QTP in summer.The precipitation condensation latent heat is the most important component of the atmospheric heat source in summer and can reflect the precipitation process.There is a strong and significant negative correlation between the atmospheric heat engine efficiency and the atmospheric heat source on the QTP in summer. 展开更多
关键词 Qinghai-Tibet plateau Climate change Land-air system atmospheric heat engine heat source on the Qinghai-Tibet plateau
原文传递
Diagnostic Analysis of the Evolution Mechanism for a Vortex over the Tibetan Plateau in June 2008 被引量:16
13
作者 李论 张人禾 温敏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期797-808,共12页
Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in... Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field. 展开更多
关键词 tibetan plateau low-level vortex atmospheric heat source PV tendency equation
下载PDF
Influence of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific on the inter-decadal variations of the stratosphere-troposphere exchange of water vapor 被引量:11
14
作者 ZHAN RuiFen1,2&LI JianPing2 1Shanghai Typhoon Institute of China Meteorological Administration,Shanghai 200030,China 2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第8期1179-1193,共15页
This study investigates the Stratosphere-Troposphere Exchange(STE) of water vapor,emphasizes its interdecadal variations over Asia in boreal summer,and discusses the influences of atmospheric heat sources over the Tib... This study investigates the Stratosphere-Troposphere Exchange(STE) of water vapor,emphasizes its interdecadal variations over Asia in boreal summer,and discusses the influences of atmospheric heat sources over the Tibetan Plateau and the tropical western North Pacific(WNP) on them by using the Wei method with reanalysis data from the European Centre for Medium-Range Weather Forecasts(ECMWF) for the years of 1958-2001.The climatology shows that the upward transport of water vapor across the tropopause in boreal summer is the most robust over the joining area of the South Asian Peninsula and Indian-Pacific Oceans(defined as AIPO).The upward transport over there can persistently convey the abundant water vapor into the stratosphere and then influence the distribution and variation of the stratospheric water vapor.The analysis shows that interdecadal variations of the water vapor exchange over the AIPO are significant,and its abrupt change occurred in the mid-1970s and the early 1990s.In these three periods,as important channels of the water vapor exchange,the effect of Bay of Bengal-East Asia as well as South China Sea was gradually weakening,while the role of the WNP becomes more and more important.Further studies show that atmospheric heat sources over the Tibetan Plateau and the WNP are two main factors in determining the interdecadal variations of water vapor exchange.The thermal influences over the Tibetan Plateau and the WNP have been greatly adjusted over the pass 44 years.Their synthesis influences the interdecadal variations of the water vapor exchange by changing the Asian summer monsoon,but their roles vary with time and regions.Especially after 1992,the influence of heat source over the Tibetan Plateau remarkably weakens,while the heat source over the WNP dominates the across-tropopause water vapor exchange.Results have important implications for understanding the transport of other components in the atmosphere and estimating the impact of human activities(emission) on global climate. 展开更多
关键词 tibetan plateau TROPICAL western North PACIFIC atmospheric heat source STE inter-decadal variations
原文传递
Relationship between Atmospheric Heat Source over the Tibetan Plateau and Precipitation in the Sichuan–Chongqing Region during Summer 被引量:7
15
作者 Xin LAI Yuanfa GONG 《Journal of Meteorological Research》 SCIE CSCD 2017年第3期555-566,共12页
NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence o... NCEP-NCAR reanalysis data and a 47-yr daily precipitation dataset from a network of 42 rain gauges are used to analyze the atmospheric heat source (〈Q1〉) anomaly over the Tibetan Plateau (TP) and its influence on the summer precipitation anomaly in the Sichuan-Chongqing region. Results show that the vertical advection of 〈Ql〉 over the central TP is a major factor affecting summer precipitation in the Sichuan-Chongqing region. When the vertical ad- vection of〈Q1〉 over the central TP is strengthened, the South Asian high shifts further than normal to the south and east, the western Pacific subtropical high shifts further than normal to the south and west, and the Indian low weak- ens. This benefits the transport of warm moist air from the low latitude oceans to the Sichuan-Chongqing region. Correspondingly, in the high latitudes, two ridges and one trough form, which lead to cool air moving southward. These two air masses converge over the Sicbuan -chongqing region, leading to significant precipitation. In contrast, when the vertical advection of 〈Q1〉 over the central TP is weakened, the South Asian high moves to the north and west, the subtropical high moves eastward and northward, and the Indian low strengthens. This circulation pattern is unfavorable for warm air advection from the south to the Sichuan-Chongqing region, and the cool air further north cannot move southward because of the presence of two troughs and one ridge at high latitude. Thus, ascent over the Sichuan-Chongqing region is weakened, resulting in less precipitation. 展开更多
关键词 tibetan plateau atmospheric heating source/sink Sichuan-Chongqing region precipitation variability
原文传递
Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data 被引量:25
16
作者 WANG MeiRong ZHOU ShunWu DUAN AnMin 《Chinese Science Bulletin》 SCIE CAS 2012年第5期548-557,共10页
The trend in the atmospheric heat source over the central and eastern Tibetan Plateau (CE-TP) is quantitatively estimated using historical observations at 71 meteorological stations, three reanalysis datasets from 198... The trend in the atmospheric heat source over the central and eastern Tibetan Plateau (CE-TP) is quantitatively estimated using historical observations at 71 meteorological stations, three reanalysis datasets from 1980-2008, and two satellite radiation datasets from 1984-2007. Results show that a weakening of sensible heat (SH) flux over the CE-TP continues. The most significant trend occurs in spring, induced mainly by decelerated surface wind speeds. The ground-air temperature difference shows a notable increasing trend over the last 5 years. Trends in net radiation flux of the atmospheric column over the CE-TP, evaluated by two satellite radiation datasets, are clearly different. Trends in the atmospheric heat source calculated by the three reanalysis datasets are not completely consistent, and even show opposite signals. Results from the two datasets both show a weakening of the heat source but the magnitude of one is significantly stronger, whereas an increase is indicated by the other data. Therefore, it is challenging to accurately calculate the trend in the atmospheric heat source over the CE-TP, particularly from the estimates of the reanalysis datasets. 展开更多
关键词 再分析资料 气象观测站 大气热源 青藏高原 净辐射通量 定量估计 数据集 感热通量
原文传递
Differences in Atmospheric Heat Source between the Tibetan Plateau–South Asia Region and the Southern Indian Ocean and Their Impacts on the Indian Summer Monsoon Outbreak 被引量:5
17
作者 Yiwei ZHANG Guangzhou FAN +3 位作者 Wei HUA Yongli ZHANG Bingyun WANG Xin LAI 《Journal of Meteorological Research》 SCIE CSCD 2017年第3期540-554,共15页
In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differe... In this paper, the NCEP-NCAR daily reanalysis data are used to investigate the characteristics of the atmospheric heat source/sink (AHSS) over South Asia (SA) and southern Indian Ocean (SIO). The thermal differences between these two regions and their influence on the outbreak of the Indian summer monsoon (ISM) are explored. Composite analysis and correlation analysis are applied. The results indicate that the intraseasonal variability of AHSS is signi- ficant in SA but insignificant in the SIO. Large inland areas in the Northern Hemisphere still behave as a heat sink in March, similar to the situation in winter. Significant differences are found in the distribution of AHSS between the ocean and land, with distinct land-ocean thermal contrast in April, and the pattern presents in the transitional period right before the ISM onset. In May, strong heat centers appear over the areas from the Indochina Peninsula to the Bay of Bengal and south of the Tibetan Plateau (TP), which is a typical pattern of AHSS distribution during the monsoon season. The timing of SA-SIO thermal difference turning positive is about 15 pentads in advance of the onset of the ISM. Then, after the thermal differences have turned positive, a pre-monsoon meridional circulation cell develops due to the near-surface heat center and the negative thermal contrast center, after which the meridional circulation of the ISM gradually establishes. In years of early (late) conversion of the SASIO thermal difference turning from neg- ative to positive, the AHSS at all levels over the TP and SIO converts later (earlier) than normal and the establish- ment of the ascending and descending branches of the ISM's meridional circulation is later (earlier) too. Meanwhile, the establishment of the South Asian high over the TP is later (earlier) than normal and the conversion of the Mas- carene high from winter to summer mode occurs anomalously late (early). As a result, the onset of the ISM is later (earlier) than normal. However, the difference in vorticity between early and late conversion only shows in the changes of strong vorticity centers' location in the upper and lower troposphere. 展开更多
关键词 tibetan plateau South Asia southern Indian Ocean atmospheric heat source Indian summer monsoon land-ocean thermal contrast
原文传递
Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations 被引量:8
18
作者 Anmin Duan Senfeng Liu +2 位作者 Yu Zhao Kailun Gao Wenting Hu 《Big Earth Data》 EI 2018年第2期179-189,共11页
The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale tempo... The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale temporal variation in the thermal forcing effect of the TP,here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80(32)meteorological stations during the period 1979–2016(1960–2016).Meanwhile,in situ air-column net radiation cooling during the period 1984–2015 was derived from satellite data.This new data-set provides continuous,robust,and the longest observational atmospheric heat source/sink data over the third pole,which will be helpful to better understand the spatial-temporal structure and multi-scale variation in TP diabatic heating and its influence on the earth’s climatic system. 展开更多
关键词 atmospheric heat source/sink DATASET tibetan plateau sensible heat latent heat
原文传递
Relationship between the atmospheric heat source over Tibetan Plateau and the heat source and general circulation over East Asia 被引量:9
19
作者 WANG YueNan ZHANG Bo +3 位作者 CHEN LongXun HE JinHai LI Wei CHEN Hua 《Chinese Science Bulletin》 SCIE EI CAS 2008年第21期3387-3394,共8页
On the basis of NCEP/NCAR version I daily reanalysis data from 1971 to 2000 and by the methods of inverse calculation,correlation analysis and comparative analysis,the influences of atmospheric heat source(AHS) over t... On the basis of NCEP/NCAR version I daily reanalysis data from 1971 to 2000 and by the methods of inverse calculation,correlation analysis and comparative analysis,the influences of atmospheric heat source(AHS) over the Tibetan Plateau on the large-scale AHS and the general circulation in summer are studied in this paper.The results show that AHS over the plateau in summer may trigger a heat source wavetrain propagating northeastward along the coast from the East Asian continent and West Pacific to Bering Strait-Arctic or even North America.In addition,if AHS over the eastern plateau is intense,South Asian High moves to southeast and West Pacific subtropical high moves to southwest;on the contrary,if AHS over the eastern plateau is weak,South Asian High moves to northwest and West Pacific subtropical high moves to northeast.Therefore,South Asian High and West Pacific sub-tropical high move in the horizontally-opposite directions in terms of interannual variation,for which AHS over the eastern plateau seems to be thermodynamically responsible. 展开更多
关键词 西藏高原 大气热源 天气 大气循环
原文传递
Interdecadal Variation of the Atmospheric Heat Source over the Tibetan Plateau and Surrounding Asian Monsoon Region: Impact on the Northern Hemisphere Summer Circulation 被引量:1
20
作者 Xiaoting SUN Yihui DING Qingquan LI 《Journal of Meteorological Research》 SCIE CSCD 2021年第2期238-257,共20页
We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern ... We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent(divergent) or low(high) potential wind function in the lower(upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation(with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to largescale divergence patterns. The synergistic effects of Pacific Decadal Oscillation(PDO) and North Atlantic Multidecadal Oscillation(AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP. 展开更多
关键词 tibetan plateau atmospheric heat source interdecadal variation global divergent circulation Asian–African summer monsoon
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部