Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How...Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.展开更多
Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in...Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field.展开更多
In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vorte...In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n^otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas.展开更多
In this study, an east-moving Tibetan Plateau vortex(TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2 E, Aqua/MODIS and CALIPSO. The objective is to demonstrate:(i) t...In this study, an east-moving Tibetan Plateau vortex(TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2 E, Aqua/MODIS and CALIPSO. The objective is to demonstrate:(i) the usefulness of multi-spectral satellite observations in understanding the evolution of a TPV and the associated rainfall, and(ii) the potential significance of cloud-top quantitative information in improving Southwest China weather forecasts. Results in this study show that the heavy rainfall is caused by the coupling of an east-moving TPV and some low-level weather systems [a Plateau shear line and a Southwest Vortex(SWV)], wherein the TPV is a key component. During the TPV's life cycle, the rainfall and vortex intensity maintain a significant positive correlation with the convective cloud-top fraction and height within a 2.5?radius away from its center. Moreover, its growth is found to be quite sensitive to the cloud phases and particle sizes. In the mature stage when the TPV is coupled with an SWV, an increase of small ice crystal particles and appearance of ring-and U/V-shaped cold cloud-top structures can be seen as the signature of a stronger convection and rainfall enhancement within the TPV. A tropopause folding caused by ageostrophic flows at the upper level may be a key factor in the formation of ring-shaped and U/V-shaped cloud-top structures. Based on these results, we believe that the supplementary quantitative information of an east-moving TPV cloud top collected by multi-spectral satellite observations could help to improve Southwest China short-range/nowcasting weather forecasts.展开更多
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China...An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity.展开更多
Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) for...Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) formation that occurred at 1800 UTC on 29 June 2003 are analyzed by using the Zwack-Okossi (Z-O) equation to diagnose the thermal and dynamic processes.It is found that,in summer,severe convective activities often occur over the Tibetan Plateau due to the abundant supply of moisture.The convective cloud near the east edge of the plateau could move eastward with a shortwave trough in the westerly.The divergent center that is induced by latent heat release,which is associated with severe convective activities,moves out with the convective cloud and contributes to the low level decompression which is favorable for the formation of plateau edge cyclogenesis (PEC).The Z-O equation indicates that,in this case,the latent heat release and convergence are the two most important factors for SWV formation,which amounts to about 42% and 15% of the term TOTAL,respectively.It is implied that the thermal process effect was more important than the dynamic process during SWV formation.展开更多
This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from ...This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.展开更多
Since 1996, a regional GPS network has been established along the northern Tibetan Plateau and its neighboring foreland, and has been measured for the period 1996\|1998.* Viewed relative to Chengdu (CHDU fiduciary sta...Since 1996, a regional GPS network has been established along the northern Tibetan Plateau and its neighboring foreland, and has been measured for the period 1996\|1998.* Viewed relative to Chengdu (CHDU fiduciary station representing the stable South China), stations of the northern plateau bounded by the Qilian Shan and the Altyn Tagh fault, move NE to NNW with 20 5~11 7mm/a, and NE to NNE with 10 5~1 5mm/a in its foreland. Addition, the Lhasa (LHAS tracking station in the southern Tibetan Plateau) moves NNE at 23 1mm/a related to CHDU. Especially interestingly, the velocities and the directions of motion vectors of stations in the northern Tibetan Plateau decrease progressively and deflect systematically westward from south to north, respectively. More, the tangents of motion vectors of stations converge around a point near the central of Qaidam Basin except the GLM station at Golmud. We, therefore, find that the general vortex feature of the crust motion appears on the velocity field in the northern Tibetan Plateau. And the anti\|clockwise vortex motion is restricted by block boundaries within the plateau, and also involved the related forelands for example HCY station (Jianyuguan) at the Hexi Corridor.展开更多
Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the...Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.展开更多
The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for E...The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.展开更多
The Tibetan Plateau Vortex(TPV)is one of the main weather systems causing heavy rainfall over the Tibetan Plateau in boreal summer.Based on the second Modern-Era Retrospective Analysis for Research and Applications(ME...The Tibetan Plateau Vortex(TPV)is one of the main weather systems causing heavy rainfall over the Tibetan Plateau in boreal summer.Based on the second Modern-Era Retrospective Analysis for Research and Applications(MERRA-2)reanalysis datasets provided by the National Aeronautics and Space Administration(NASA),8 cases of TPV over the Tibetan Plateau generated in June-August with a lifetime of 42 hours are composited and analyzed to reveal the impact of dynamic and thermal forcing on the intensity evolution of TPVs.The results are as follows.(1)The TPVs appear obviously at 500 h Pa and the TPVs intensity(TPVI)shows an obvious diurnal variation with the strongest at 00 LT and the weakest at 12 LT(LT=UTC+6 h).(2)A strong South Asia High at 200 h Pa as well as a shrunken Western Pacific Subtropical High at 500 h Pa provide favorable conditions for the TPVI increasing.(3)The vorticity budget reveals that the divergence is indicative of the variation of the TPVI.The TPVI decreases when the convergence center at500 h Pa and the divergence center at 200 h Pa lie in the east of the TPVs center and increases when both centers coincide with the TPVs center.(4)Potential vorticity(PV)increases with the enhancement of the TPVI.The PV budget shows that the variation of the TPVI is closely related to the diabatic heating over the Tibetan Plateau.The increased sensible heating and radiative heating in the boundary layer intensify the ascent and latent heating release.When the diabatic heating center rises to 400 h Pa,it facilitates the development of the TPVs.展开更多
本文通过在中国气象局BCC-AGCM3-MR(middle-atmosphere version of Beijing Climate Center Atmospheric General Circulation Model version 3)数值模式中引入非静力地形重力波参数化方案,研究非静力效应对次网格地形重力波垂直动量传...本文通过在中国气象局BCC-AGCM3-MR(middle-atmosphere version of Beijing Climate Center Atmospheric General Circulation Model version 3)数值模式中引入非静力地形重力波参数化方案,研究非静力效应对次网格地形重力波垂直动量传输及大气环流的影响.本研究开展了两组次网格地形重力波参数化方案试验,分别采用原有的静力地形重力波参数化方案以及考虑非静力效应的新方案.结果表明,在南半球冬季,新方案相比原方案在南极地区将更多的地形重力波动量通量上传至平流层高层,产生更强的地形重力波拖曳.地形重力波拖曳经向梯度的增强导致更强的绝热下沉增温,从而减弱南极极涡的冷偏差和西风偏差.此外,南半球中高纬地区的行星Rossby波上传也增强,同样有利于极涡西风偏差的减少.在两者共同作用下,有效缓解了模式中的南极极涡破碎延迟问题.在北半球冬季,新方案对大尺度环流的整体影响并不显著,但是能够显著改善青藏高原复杂地形区的东风偏差.展开更多
The Bay of Bengal(BoB)tropical cyclones(TCs)and the Tibetan Plateau vortices(TPVs)are two crucial weather systems influencing the Tibetan Plateau(TP).Their synergistic effects can lead to widespread heavy precipitatio...The Bay of Bengal(BoB)tropical cyclones(TCs)and the Tibetan Plateau vortices(TPVs)are two crucial weather systems influencing the Tibetan Plateau(TP).Their synergistic effects can lead to widespread heavy precipitation events on the TP.In this study,we employ the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model to track the trajectory of water vapor transport during three large-scale precipitation events on the TP under the combined influence of BoB TCs and TPVs.The results indicate that low-level water vapor from the BoB under the influence of BoB TCs was cyclonically entangled into the cyclonic circulation,lifted and transported northward by southwesterly flow to the southeastern part of the TP,which contributes to the moistening of the entire troposphere there.Additionally,convergence of the cyclonic circulation of the TPVs on the northern TP further transports water vapor collected in the southeastern TP northward,conducive to the maintenance and development of precipitation systems,thus inducing widespread heavy precipitation events over the TP.展开更多
高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键...高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42175002,42030611,42075013)the Natural Science Foundation of Sichuan,China(Grant No.2023NSFSC0242)the Innovation Team Fund of Southwest Regional Meteorological Center,China Meteorological Administration(Grant No.XNQYCXTD-202202)。
文摘Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.
基金supported by the National Natural Science Foundation of China (Grant No. 40921003)the National Key Program for Developing Basic Sciences (Grant No. 2004CB418300)the International S&T Cooperation Project of the Ministry of Science and Technology of China under Grant No.2009DFA21430
文摘Based on the final analyses data (FNL) of the Global Forecasting System of the NCEP and the obser- vational radiosonde data, the evolution mechanism of an eastward-moving low-level vortex over the Tibetan Plateau in June 2008 was analyzed. The results show that the formation of the vortex was related to the convergence between the northwesterly over the central Tibetan Plateau from the westerly zone and the southerly from the Bay of Bengal at 500 hPa, and also to the divergence associated with the entrance re- gion of the upper westerly jet at 200 hPa. Their dynamic effects were favorable for ascending motion and forming the vortex over the Tibetan Plateau. Furthermore, the effect of the atmospheric heat source (Q1) is discussed based on a transformed potential vorticity (PV) tendency equation. By calculating the PV budgets, we showed that Q1 had a great inffuence on the intensity and moving direction of the vortex. In the developing stage of the vortex, the heating of the vertically integrated Q1 was centered to the east of the vortex center at 500 hPa, increasing PV tendency to the east of the vortex. As a result, the vortex strengthened and moved eastward through the vertically uneven distribution of Q1. In the decaying stage, the horizontally uneven heating of Q1 at 500 hPa weakened the vortex through causing the vortex tubes around the vortex to slant and redistributing the vertical vorticity field.
基金supported by the National Key Basic Research and Development Project of China(Grant No.2012CB417202)the National Nature Science Fund of China(Grant No.41175045)+1 种基金the Special Fund for Meteorological Research in the Public Interest(Grant Nos.GYHY201006014,GYHY201206042 and GYHY201106003)the Sichuan Meteorological Bureau Fund for Young Scholars(Grant No.2011YOUTH02)
文摘In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n^otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas.
基金supported by the National Natural Science Foundation of China (Grant Nos.41575048 and 91637105)
文摘In this study, an east-moving Tibetan Plateau vortex(TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2 E, Aqua/MODIS and CALIPSO. The objective is to demonstrate:(i) the usefulness of multi-spectral satellite observations in understanding the evolution of a TPV and the associated rainfall, and(ii) the potential significance of cloud-top quantitative information in improving Southwest China weather forecasts. Results in this study show that the heavy rainfall is caused by the coupling of an east-moving TPV and some low-level weather systems [a Plateau shear line and a Southwest Vortex(SWV)], wherein the TPV is a key component. During the TPV's life cycle, the rainfall and vortex intensity maintain a significant positive correlation with the convective cloud-top fraction and height within a 2.5?radius away from its center. Moreover, its growth is found to be quite sensitive to the cloud phases and particle sizes. In the mature stage when the TPV is coupled with an SWV, an increase of small ice crystal particles and appearance of ring-and U/V-shaped cold cloud-top structures can be seen as the signature of a stronger convection and rainfall enhancement within the TPV. A tropopause folding caused by ageostrophic flows at the upper level may be a key factor in the formation of ring-shaped and U/V-shaped cloud-top structures. Based on these results, we believe that the supplementary quantitative information of an east-moving TPV cloud top collected by multi-spectral satellite observations could help to improve Southwest China short-range/nowcasting weather forecasts.
基金This research was jointly supported by the National Natural Science Foundation of China(Grant Nos.41730963 and 41876020)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000).
文摘An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY)during the end of June 2016,which was attributable to a Tibetan Plateau(TP)Vortex(TPV)in conjunction with a Southwest China Vortex(SWCV).The physical mechanism for this event was investigated from Potential Vorticity(PV)and omega perspectives based on MERRA-2 reanalysis data.The cyclogenesis of the TPV over the northwestern TP along with the lower-tropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave.Subsequently,the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY.The merged TPV−SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY.With the TPV-embedded mid-tropospheric trough migrating continuously eastward,the almost stagnant SWCV was re-separated from the overlying TPV,forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding,isentropic-displacement,and diabatic heating-related ascending components over the MLY.This led to more intense rainfall.Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating,as well as the feedback of condensation latent heating on the isentropic-displacement vertical velocity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40875021 and 40930951)the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No. 2009LASW-A03)
文摘Based on the temperature of the black body (TBB),station observed and NCEP reanalysis data,the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) formation that occurred at 1800 UTC on 29 June 2003 are analyzed by using the Zwack-Okossi (Z-O) equation to diagnose the thermal and dynamic processes.It is found that,in summer,severe convective activities often occur over the Tibetan Plateau due to the abundant supply of moisture.The convective cloud near the east edge of the plateau could move eastward with a shortwave trough in the westerly.The divergent center that is induced by latent heat release,which is associated with severe convective activities,moves out with the convective cloud and contributes to the low level decompression which is favorable for the formation of plateau edge cyclogenesis (PEC).The Z-O equation indicates that,in this case,the latent heat release and convergence are the two most important factors for SWV formation,which amounts to about 42% and 15% of the term TOTAL,respectively.It is implied that the thermal process effect was more important than the dynamic process during SWV formation.
基金National Basic Research Program of China(2012CB417202)National Natural Science Foundation of China(41175045,91337215,Ul 133603)Special Fund for Meteorological Research in the Public Interest(GYHY201206042)
文摘This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.
文摘Since 1996, a regional GPS network has been established along the northern Tibetan Plateau and its neighboring foreland, and has been measured for the period 1996\|1998.* Viewed relative to Chengdu (CHDU fiduciary station representing the stable South China), stations of the northern plateau bounded by the Qilian Shan and the Altyn Tagh fault, move NE to NNW with 20 5~11 7mm/a, and NE to NNE with 10 5~1 5mm/a in its foreland. Addition, the Lhasa (LHAS tracking station in the southern Tibetan Plateau) moves NNE at 23 1mm/a related to CHDU. Especially interestingly, the velocities and the directions of motion vectors of stations in the northern Tibetan Plateau decrease progressively and deflect systematically westward from south to north, respectively. More, the tangents of motion vectors of stations converge around a point near the central of Qaidam Basin except the GLM station at Golmud. We, therefore, find that the general vortex feature of the crust motion appears on the velocity field in the northern Tibetan Plateau. And the anti\|clockwise vortex motion is restricted by block boundaries within the plateau, and also involved the related forelands for example HCY station (Jianyuguan) at the Hexi Corridor.
基金supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund grant agreement P100195 between the Met Office and the National Centre for Atmospheric Science at the University of Reading for the MESETA(Modelling Physical and Dynamical Processes over the Tibetan Plateau and their Regional Effects over East Asia) project
文摘Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.
基金supported by the National Key Research and Development Program (Grant Nos. 2016YFA0601504 and 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41775059)+2 种基金the China National 973 Project (Grant No. 2015CB453203)the Basic Scientific Research and Operation Foundation of CAMS (Grant Nos. 2016Y001 and 2018Z006)the Science and Technology Development Fund of CAMS (Grant No. 2018KJ029)
文摘The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.
基金National Key R and D Program of China(2018YFC1507804)National Natural Science Foundation of China(91637105,41775048 and 91937301)Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)
文摘The Tibetan Plateau Vortex(TPV)is one of the main weather systems causing heavy rainfall over the Tibetan Plateau in boreal summer.Based on the second Modern-Era Retrospective Analysis for Research and Applications(MERRA-2)reanalysis datasets provided by the National Aeronautics and Space Administration(NASA),8 cases of TPV over the Tibetan Plateau generated in June-August with a lifetime of 42 hours are composited and analyzed to reveal the impact of dynamic and thermal forcing on the intensity evolution of TPVs.The results are as follows.(1)The TPVs appear obviously at 500 h Pa and the TPVs intensity(TPVI)shows an obvious diurnal variation with the strongest at 00 LT and the weakest at 12 LT(LT=UTC+6 h).(2)A strong South Asia High at 200 h Pa as well as a shrunken Western Pacific Subtropical High at 500 h Pa provide favorable conditions for the TPVI increasing.(3)The vorticity budget reveals that the divergence is indicative of the variation of the TPVI.The TPVI decreases when the convergence center at500 h Pa and the divergence center at 200 h Pa lie in the east of the TPVs center and increases when both centers coincide with the TPVs center.(4)Potential vorticity(PV)increases with the enhancement of the TPVI.The PV budget shows that the variation of the TPVI is closely related to the diabatic heating over the Tibetan Plateau.The increased sensible heating and radiative heating in the boundary layer intensify the ascent and latent heating release.When the diabatic heating center rises to 400 h Pa,it facilitates the development of the TPVs.
文摘本文通过在中国气象局BCC-AGCM3-MR(middle-atmosphere version of Beijing Climate Center Atmospheric General Circulation Model version 3)数值模式中引入非静力地形重力波参数化方案,研究非静力效应对次网格地形重力波垂直动量传输及大气环流的影响.本研究开展了两组次网格地形重力波参数化方案试验,分别采用原有的静力地形重力波参数化方案以及考虑非静力效应的新方案.结果表明,在南半球冬季,新方案相比原方案在南极地区将更多的地形重力波动量通量上传至平流层高层,产生更强的地形重力波拖曳.地形重力波拖曳经向梯度的增强导致更强的绝热下沉增温,从而减弱南极极涡的冷偏差和西风偏差.此外,南半球中高纬地区的行星Rossby波上传也增强,同样有利于极涡西风偏差的减少.在两者共同作用下,有效缓解了模式中的南极极涡破碎延迟问题.在北半球冬季,新方案对大尺度环流的整体影响并不显著,但是能够显著改善青藏高原复杂地形区的东风偏差.
基金Supported by the National Natural Science Foundation of China(41930972)。
文摘The Bay of Bengal(BoB)tropical cyclones(TCs)and the Tibetan Plateau vortices(TPVs)are two crucial weather systems influencing the Tibetan Plateau(TP).Their synergistic effects can lead to widespread heavy precipitation events on the TP.In this study,we employ the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model to track the trajectory of water vapor transport during three large-scale precipitation events on the TP under the combined influence of BoB TCs and TPVs.The results indicate that low-level water vapor from the BoB under the influence of BoB TCs was cyclonically entangled into the cyclonic circulation,lifted and transported northward by southwesterly flow to the southeastern part of the TP,which contributes to the moistening of the entire troposphere there.Additionally,convergence of the cyclonic circulation of the TPVs on the northern TP further transports water vapor collected in the southeastern TP northward,conducive to the maintenance and development of precipitation systems,thus inducing widespread heavy precipitation events over the TP.
文摘高原涡(TPV)是生成于青藏高原主体的一类浅薄中尺度涡旋系统,其发生频繁、影响范围广、造成灾害强,是我国最重要的致灾中尺度系统之一。全面揭示高原涡的统计特征是本领域研究的重要基础。其中,高原涡的精准识别是认识其统计特征的关键。随着高时空分辨率再分析资料的出现,高原涡的研究有了更好的数据基础,然而,无论是人工识别方法还是基于较粗分辨率的客观识别算法都难以高效地适用于当前的新再分析资料。因此,亟需发展一种高精度的、适用于高时空分辨率再分析资料的高原涡客观识别方法。本文提出了一种适用于高分辨率再分析资料、基于风场的限制涡度高原涡客观识别算法(Restricted-vorticity based Tibetan-Plateau-vortex Identifying Algorithm,简称RTIA)。该方法首先判断高原涡候选点,然后以候选点为中心,划分多个象限,通过象限平均风场限定条件和象限组逆时针旋转(北半球)条件确定高原涡中心,无需复杂计算及对各气压层分别设定阈值,即可快速实现高原涡的水平和垂直追踪。基于1979~2020年共42个暖季(5~9月)、15466个高原涡(共计99090时次)大样本的评估表明,RTIA方法识别高原涡的平均命中率超过95%,平均空报率低于9%,平均漏报率少于5%,可以十分准确地对高原涡进行识别。此外,评估还表明RTIA方法应用于不同空间分辨率的再分析资料(如0.5°或0.25°)时,仍能保持高原涡识别的高准确率,其识别结果主要受涡旋自身强度的影响,对弱涡旋的识别精度比强涡旋偏低。该方法对其他中尺度涡旋识别也具有一定的借鉴意义。