H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the c...Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the complex rela-tionship between monoclonal antibody therapy and HBV reactivation,drawing upon current literature and clinical case studies.It delves into the mechanisms underlying this phenomenon,highlighting the importance of risk assessment,monitoring,and prophylactic measures for patients at risk.The manuscript aims to enhance the understanding of HBV reactivation in the context of monoclonal antibody therapy,ultimately facilitating informed clinical decision-making and improved patient care.This paper will also briefly review the definition of HBV activation,assess the risks of reactivation,especially in patients treated with monoclonal antibodies,and consider management for patients with regard to screening,prophylaxis,and treatment.A better understanding of patients at risk can help clinicians provide optimum management to ensure successful patient outcomes and prevent morbidity.展开更多
More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last dec...More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.展开更多
[ Objective] To screen a suitable serum dilution and determine the normal range of antibodies against rabies viruses (RV) in dog serum. [Method]A sensitive, specific and suitable serum dilution was screened. A total...[ Objective] To screen a suitable serum dilution and determine the normal range of antibodies against rabies viruses (RV) in dog serum. [Method]A sensitive, specific and suitable serum dilution was screened. A total of 812 dog serum samples were collected from Changchun, Nanning and Uuzhou regions, and then they were diluted with above screened serum dilution and evaluated by indirect enzyme-linked immunosorbont assay (ELISA). The positive and negative standard dog sara from the World Organization for Animal Health (OIE) were used as controls. The serum samples with different A450 were randomly selected and the anti-RV serum titers were detected by rapid fluorescent focus inhibition test (RFFIT). According to the A450 of dog sera, the normal A450 range of negative serum and 95% confidence intervals were calculated with SPSS 10.0 software, and the regression equation of OIE standards was established. [ Result] The screened serum dilution was sensitive and specific; at least 756 negative serum samples were obtained; the normal range and 95% confidence interval of negative serum were 0.127 3 ± 0.059 8 and 0.078 1 -0.172 3, respectively; and the regression equation was A450 = 1.139 serum titer (IU) ±0.470. [ Conclusion] These results lay a foundation for thecontrolling of dog rabies endemic and the development of ELISA kits of dog antibodies against RV.展开更多
Layer chickens were immunized with three species of inactivated orthopox virus (vaccinia virus, calpox virus and cowpox virus). Antibodies (IgY) were purified from egg yolks by improved polyethylene glycol precipi...Layer chickens were immunized with three species of inactivated orthopox virus (vaccinia virus, calpox virus and cowpox virus). Antibodies (IgY) were purified from egg yolks by improved polyethylene glycol precipitation. The development of IgY directed against orthopox virus antigens was followed by immunofluorescence assay, plaque reduction neutraliztion test and immunoelectron microscopy. Cross-reactivity of two IgY antibodies with cells infected by the different strains of the pox viruses was also investigated by different methods (immunofluorescence assay, plaque reduction neutraliztion test and Western blot). Even in very high dilutions in immunofluorescence assay (titres up to 1:10^6 and 1:10^5, respectively) and persisted on a plateau over 10 months after four booster injections, it was showed that anti-vaccinia virus IgY and anti-calpox virus IgY were positive. Neutralizing activity and ultra-structural detection of antigen with gold-labelled antibodies were respectively observed in plaque reduction neutralization test and immunoelectron microscopy. Western blot analysis revealed specific binding of IgY to virus proteins. Thus, there was cross-reactivity between different orthopox viruses. Finally, orthopox virns-specific IgY antibodies bounded magnetic beads (Dynabead) were used to concentration of orthopox viruses. This study suggests that anti-pox virus IgY could serve as a useful tool for orthopox viruses diagnosis.展开更多
AIM To prepare hybridoma cell lines which secrete anti HCV recombinant NS3 and NS5 proteins′ monoclonal antibodies, and to evaluate their usage in the study of the distribution of HCV NS3 and NS5 antigen in liver t...AIM To prepare hybridoma cell lines which secrete anti HCV recombinant NS3 and NS5 proteins′ monoclonal antibodies, and to evaluate their usage in the study of the distribution of HCV NS3 and NS5 antigen in liver tissues. METHODS The hybridoma cell lines were raised using the spleen cells of BALB/C mouse immunized with recombinant NS3 and NS5 proteins according to the conventional protocols. The antibody secreting cells were screened using solid phase ELISA and cloned by limited dilution method. In order to determine the specificity of these hybridoma cell lines, the culture supernatant of these cells was western blot assayed with expression and nonexpresion E. coli and ELISA with other antigens, including HCV core and NS3 and HBsAg. Immunohistochemistry of 51 cases paraffin embedded liver tissues was performed to determine the distribution of HCV NS5 antigen as well as NS3 antigen in liver tissues. RESULTS Eight hybridoma cell lines secreting monoclonal antibodies against HCV NS3 and NS5 proteins were raised. They are named 2B6, 2F3, 3D8, 3D9, 8B2, 6F11, 4C6 and 7D9. Among them only 2B6 against NS3 protein can react with the polypipetides of C7 that is another recombinant polypipetides of NS3 gene. Others have no reaction with HCV core and HBsAg of HBV, and there is no cross reaction between NS3Ag and anti NS5Ag McAb and between NS5Ag and anti NS3 McAb. The immunohistochemistry results indicate that no HCV antigen was detected in the specimens of HBV infection in 20 cases. In 31 HCV infected specimens the positive rate of NS3Ag and NS5Ag are 51 6% (16/31) and 54 9% (17/31), respectively. There were six pure HCV infected specimens in these 31 specimens and half of them were HCV NS3Ag and NS5Ag positive. In the co infection of HBV and HCV group the positive rate of NS3Ag and NS5Ag were 52% (13/25) and 56% (14/25), respectively, almost the same with that of pure HCV infected group. The positive rates of HCV antigens were 70 6% (12/17) and 76 5% (13/17) in CAC patients. CONCLUSION The monoclonal antibodies we prepared are specific to the recombinant HCV NS3 and NS5 proteins and can be used in the clinical immunohistochemistry diagnosis.展开更多
Aphid-borne Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses of cucurbitaceous plants. To survey and control this virus, it is necessary to develop an efficient detection techniq...Aphid-borne Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses of cucurbitaceous plants. To survey and control this virus, it is necessary to develop an efficient detection technique. Using purified ZYMV virion and the conventional hybridoma technology, three hybridoma cell lines (16A11, 5A7 and 3B8) secreting monoclonal antibodies (MAbs) against ZYMV Zhejiang isolate were obtained. The working titers of the ascitic fluids secreted by the three hybridoma cell lines were up to 10^-7 by indirect enzyme-linked immunosorbent assay (ELISA). All MAbs were isotyped as IgG1, kappa light chain. Western blot analysis indicated that the MAb 3B8 could specifically react with the coat protein of ZYMV while MAbs 5A7 and 16A11 reacted strongly with a protein of approximately 51 kDa from the ZYMV-infected leaf tissues. According to this molecular weight, we consider this reactive protein As likely to be the HC-Pro protein. Using these three MAbs, we have now developed five detection assays, i.e., antigen-coated-plate ELISA (ACP-ELISA), dot-ELISA, tissue blot-ELISA, double-antibody sandwich ELISA (DAS-ELISA), and immunocapture-RT-PCR (IC-RT-PCR), for the sensitive, specific, and easy detection of ZYMV. The sensitivity test revealed that ZYMV could be readily detected respectively by ACP-ELISA, dot-ELISA, DAS-ELISA and IC-RT-PCR in 1:163840, 1:2560, 1:327680 and 1:1 310720 (w/v, g mL-1) diluted crude extracts from the ZYMV-infected plants. We demonstrated in this study that the dot-ELISA could also be used to detect ZYMV in individual viruliferous aphids. A total of 275 cucurbitaceous plant samples collected from the Zhejiang, Jiangsu, Shandong and Hainan provinces, China, were screened for the presence of ZYMV with the described assays. Our results showed that 163 of the 275 samples (59%) were infected with ZYMV. This finding indicates that ZYMV As now widely present in cucurbitaceous crops in China. RT-PCR followed by DNA sequencing and sequence analyses confirmed the accuracy of the five assays. We consider that these detection assays can significantly benefit the control of ZYMV in China.展开更多
Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronavifidae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome ...Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronavifidae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapul- monary manifestations. Currently, there are no approved treatment regimens or vaccines for MERS. Here~ we generated recombinant nonvirulent Newcastle disease virus (NDV) LaSota strain expressing MERS-CoV S protein (designated as rLa- MERS-S), and evaluated its immunogenicity in mice and Bactrian camels. The results revealed that rLa-MERS-S showed similar growth properties to those of LaSota in embryonated chicken eggs, while animal immunization studies showed that rLa-MERS-S induced MERS-CoV neutralizing antibodies in mice and camels. Our findings suggest that recombinant rLa- MERS-S may be a potential MERS-CoV veterinary vaccine candidate for camels and other animals affected by MERS.展开更多
Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous vir...Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20%-30% of acutely infected individuals and results in resolution of infection without sequaelae. Both viral and host factors appear to play an important role for resolution of acute infection. A large body of evidence suggests that a strong, multispecific and long-lasting cellular immune response appears to be important for control of viral infection in acute hepatitis C. Due too the lack of convenient neutralization assays, the impact of neutralizing responses for control of viral infection had been less defined. In recent years, the development of robust tissue culture model systems for HCV entry and infection has finally allowed study of antibody-mediated neutralization and to gain further insights into viral targets of host neutralizing responses. In addition, detailed analysis of antibody-mediated neutralization in individual patients as well as cohorts with well defined viral isolates has enabled the study of neutralizing responses in the course of HCV infection and characterization of the impact of neutralizing antibodiesfor control of viral infection. This review will summarize recent progress in the understanding of the molecular mechanisms of antibody-mediated neutralization and its impact for HCV pathogenesis.展开更多
The study investigated the distribution of Epstein-Barr virus(EBV)EA-IgA,VCAIgA,and EBVNA-IgG antibodies in a local population of Wuhan,China.Chemiluminescence immunoassay(CL1A)was used to detect EBV EA-IgA,VCA-IgA,an...The study investigated the distribution of Epstein-Barr virus(EBV)EA-IgA,VCAIgA,and EBVNA-IgG antibodies in a local population of Wuhan,China.Chemiluminescence immunoassay(CL1A)was used to detect EBV EA-IgA,VCA-IgA,and EBVNA-IgG antibodies in 972 subjects undergoing physical examination in Wuhan,and the results were analyzed.The detection rate of EBV was positively correlated with age.In the 972 cases,there was significant difference between different genders in the positive rate of VCA-IgA and EBVNA-IgG.Moreover,the positive rate of VCA-IgA and EBVNA-IgG was higher in men>60 years old than in those<60 but no significant differences were found in three antibodies among various age groups.Our results suggested that the EBV infection should be intensively monitored in elderly people in Wuhan.展开更多
Tomato yellow leaf curl virus(TYLCV)is a species of the family Geminiviridae,causing serious yield losses in tomato production.The coat protein(CP)gene of TYLCV isolate SH2 was expressed in Escherichia coli BL21(...Tomato yellow leaf curl virus(TYLCV)is a species of the family Geminiviridae,causing serious yield losses in tomato production.The coat protein(CP)gene of TYLCV isolate SH2 was expressed in Escherichia coli BL21(DE3)using pET-32a as the expression vector.The recombinant protein was purified through Ni+-NTA affinity column and used to immunize BALB/c mice.Three hybridoma cell lines(2B2,2E3 and 3E10)secreting monoclonal antibodies(MAbs)against TYLCV CP were obtained by fusing mouse myeloma cells(Sp 2/0)with spleen cells from the immunized BALB/c mouse.The titers of ascitic fluids of three MAbs ranged from 10-6 to 10-7 in indirect-ELISA.Isotypes and subclasses of all the MAbs belonged to IgG1,κ light chain.Triple antibody sandwich enzyme-linked immunosorbent assay(TAS-ELISA)showed that the MAb 3E10 could react with five begomoviruses infecting tomato,while the other two(2B2 and 2E3)mainly reacted with TYLCV.TAS-ELISA was set up using the MAb 3E10,and the established method could successfully detect virus in plant sap at 1:2 560(w/v,g mL-1).Detection of field samples showed that begomoviruses were common in tomato crops in Zhejiang Province,China.展开更多
To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection, anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rab...To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection, anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rabies virus vaccine strain (PV strain) were used as immunogens to immunize 6-8 week old female BALB/c mice. Spleen cells and SP2/0 myeloma cells were fused according to conventional methods: the monoclonal cell strains obtained were selected using the indirect immunofluorescence test; this was followed by preparation of monoclonal antibody ascitic fluid; and finally, systematic identification of subclass, specificity and sensitivity was carried out. Two high potency and specific monoclonal antibodies against rabies virus were obtained and named 3B12 and 4A12, with ascitic fluid titers of 1:8000 and 1:10000, respectively. Both belonged to the IgG2a subclass. These strains secrete potent, stable and specific anti-rabies virus monoclonal antibodies, which makes them well suited for the development of rabies diagnosis reagents.展开更多
Monoclonal antibodies(mAbs) are widely used in virus research and disease diagnosis. The nucleoprotein(NP) of influenza A virus(IAV) plays important roles in multiple stages of the virus life cycle. Therefore, generat...Monoclonal antibodies(mAbs) are widely used in virus research and disease diagnosis. The nucleoprotein(NP) of influenza A virus(IAV) plays important roles in multiple stages of the virus life cycle. Therefore, generating conserved mAbs against NP and characterizing their properties will provide useful tools for IAV research. In this study, two mAbs against the NP protein, 10 E9 and 3 F3, were generated with recombinant truncated NP proteins(NP-1 and NP-2) as immunogens. The heavy-chain subclass of both 10 E9 and 3 F3 was determined to be IgG2α, and the light-chain type was κ. Truncation and site-specific mutation analyses showed that the epitopes of mAbs 10 E9 and 3 F3 were located in the N terminal 84–89 amino acids and the C terminal 320–324 amino acids of the NP protein, respectively. We found that mAbs 10 E9 and 3 F3 reacted well with the NP protein of H1–H15 subtypes of IAV. Both 10 E9 and 3 F3 can be used in immunoprecipitation assay, and 10 E9 was also successfully applied in confocal microscopy. Furthermore, we found that the 10 E9-recognized _(84) SAGKDP_(89) epitope and 3 F3-recognized 320 ENPAH324 epitope were highly conserved in NP among all avian and human IAVs. Thus, the two mAbs we developed could be used as powerful tools in the development of diagnostic methods of IAV, and also surely promote the basic research in understanding the replication mechanisms of IAV.展开更多
Flounder gill (FG) cells were used to isolate lymphocystis disease virus (LCDV) and two monoclonal antibodies (Mabs) (1A8 and 3G3) against LCDV were used to trace LCDV infection to FG cells. FG monolayer cells...Flounder gill (FG) cells were used to isolate lymphocystis disease virus (LCDV) and two monoclonal antibodies (Mabs) (1A8 and 3G3) against LCDV were used to trace LCDV infection to FG cells. FG monolayer cells was inoculated with LCDV supernatant, obtained from lymphocystis cells of diseased flounder, Paralichthys olivaceus. LCDV infection was detected with Mabs employing immunocytochemical assay (ICA) and indirect immunofluorescence assay test (IIFAT) technique. Detected by IIFAT, they were specifie for LCDV. The results of experimental infection illustrated that FG cells was sensitive to LCDV, and showed virus-infection positive detected by ICA. Cytopathic effect (CPE) occurred 1-2 days post inoculation (PI), and half tissue culture infection dosage (TCID50) of vires supematant was 2^2.57 per 40μl. Tracing by IIFAT showed that LCDV positive signal first appeared at the cell membrane immediately PI, and then in cytoplasm at 24h PI, it reached the strongest positive at 48-72 h PI, and began to decrease at 96h PI.展开更多
Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of e...Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.展开更多
In chickens, infectious bronchitis (IB) is a major respiratory disease. The respiratory system is the primary multiplication site of IB virus (IBV), a coronavirus, after which the virus is distributed to other organs....In chickens, infectious bronchitis (IB) is a major respiratory disease. The respiratory system is the primary multiplication site of IB virus (IBV), a coronavirus, after which the virus is distributed to other organs. Poultry farms sustain considerable economic damage due to IB outbreaks in flocks, since IB causes a severe reduction in weight gain in chicks. In the present study, we produced the ostrich IgY against IBV by immunizing female ostriches with the IB viral antigens. The resultant purified IgY showed a strong neutralizing activity against IBV infection of cultured primary chick kidney cells. The infectivity of IBV was markedly inhibited in the trachea of chicks when ostrich IgY was injected intra-muscularly into newly hatched chicks prior to viral inhalation challenge at two weeks of age. Furthermore, the infection was strongly blocked in the tracheae when IgY was injected into chicks at one day and one week of age, with viral inhalation performed at three weeks of age. These findings suggest that the injection of ostrich IgY can help protect young chicks from IBV infections. In south Asian and African countries, broiler chicks are sent to poultry market around 30 days of age, so it is important to prevent IB outbreaks in very young flocks. We strongly believe that ostrich IgY will be a powerful weapon against IB infection in poultry farms on a wide scale and also hope that these findings will aid in the development of antibody vaccines for new type corona viruses, SARS-CoV and MERS-CoV.展开更多
Hepatitis C virus(HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies(m Ab) of mice are predominantly used for the im...Hepatitis C virus(HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies(m Ab) of mice are predominantly used for the immunodiagnosis of several viral,bacterial,and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mA b are used in the immunotherapy of several blood malignancies,such as lymphoma and leukemia,as well as for autoimmune diseases. In this review article,we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mA b in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV,which is a major health problem throughout the world,particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mA b. Finally,we will discuss available and new trends to produce antibodies,such as egg yolk-based antibodies(Ig Y),production in transgenic plants,and the synthetic antibody mimics approach.展开更多
In the present study,a total of 24 MAbs were produced against bluetongue virus (BTV) by polyethyleneglycol (PEG) mediated fusion method using sensitized lymphocytes and myeloma cells. All these clones were characteriz...In the present study,a total of 24 MAbs were produced against bluetongue virus (BTV) by polyethyleneglycol (PEG) mediated fusion method using sensitized lymphocytes and myeloma cells. All these clones were characterized for their reactivity to whole virus and recombinant BTV-VP7 protein,titres,isotypes and their reactivity with 24 BTV-serotype specific sera in cELISA. Out of 24 clones,a majority of them (n = 18) belong to various IgG subclasses and the remaining (n = 6) to the IgM class. A panel of eight clones reactive to both whole BTV and purified rVP7 protein were identified based on their reactivity in iELISA. For competitive ELISA,the clone designated as 4A10 showed better inhibition to hyperimmune serum of BTV serotype 23. However,this clone showed a variable percent of inhibition ranging from16.6% with BTV 12 serotype to 78.9% with BTV16 serotype using 24 serotype specific sera of BTV originating from guinea pig at their lowest dilutions. From the available panel of clones,only 4A10 was found to have a possible diagnostic application.展开更多
Japanese encephalitis (JE) is a central nervous system disease caused by Japanese encephalitis virus (JEV), which can infect human and a variety of animals and cause irreversible nerve damages. NS3 protein plays a...Japanese encephalitis (JE) is a central nervous system disease caused by Japanese encephalitis virus (JEV), which can infect human and a variety of animals and cause irreversible nerve damages. NS3 protein plays an important role in the process of JEV polyprotein hydrolysis, which is essential for JEV replication. Therefore, NS3 protein may be used as a potential drug target to treat Japanese encephalitis. In this study, the pET-28a-NS3 plasmid was successfully constructed and expressed in E. coli BL21 ( DE3 ) under IPTG induction. The molecular weight of the expressed recombinant protein was 55 ku, which was consistent with the expected result. The positive serum was prepared by immunizing BALB/c mice with NS3 protein and identified by indirect immunofluorescence (IFA). The results showed that there was a fluorescence reaction between the prepared positive serum of NS3 protein and cells infected with JEV.展开更多
[ Objective] To develop an indirect ELISA assay for detecting antibodies against envelope glycoprotein ( E protein) of Japanese encephalitis virus (JEV). [ Method] Specific primers were designed according to JEV s...[ Objective] To develop an indirect ELISA assay for detecting antibodies against envelope glycoprotein ( E protein) of Japanese encephalitis virus (JEV). [ Method] Specific primers were designed according to JEV sequences published in the GenBank. The cDNA of JEV E gene (about 1 000 10p) was amplified by the RT-PCR with the specific primers. After sequencing analysis, the E gene was cloned into pET30a expression vector and expressed in E. coli BL21 (DE3) with the induction of IPTG. After denaturation, purification and renaturation, the recombinant protein was analyzed by the SDS-PAGE and the westem blotting. An indirect ELISA was developed to detect antibodies against JEV. [ Result] The E protein was mainly expressed in inclusion body. With the purified E protein, the indirect ELISA was developed and displayed good specificity, sensitivity and repeatability, [ Conclusion]The developed ELISA using the truncated E protein as antigen is a simple, convenient and rapid serological method for diagnosis, monitoring antibody level and epidemiological investigation of JEV.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘Hepatitis B virus(HBV)reactivation poses a significant clinical challenge,espe-cially in patients undergoing immunosuppressive therapies,including mono-clonal antibody treatments.This manuscript briefly explores the complex rela-tionship between monoclonal antibody therapy and HBV reactivation,drawing upon current literature and clinical case studies.It delves into the mechanisms underlying this phenomenon,highlighting the importance of risk assessment,monitoring,and prophylactic measures for patients at risk.The manuscript aims to enhance the understanding of HBV reactivation in the context of monoclonal antibody therapy,ultimately facilitating informed clinical decision-making and improved patient care.This paper will also briefly review the definition of HBV activation,assess the risks of reactivation,especially in patients treated with monoclonal antibodies,and consider management for patients with regard to screening,prophylaxis,and treatment.A better understanding of patients at risk can help clinicians provide optimum management to ensure successful patient outcomes and prevent morbidity.
基金This project has been funded in whole or in part with federal funds from the National Cancer Institute,National Institutes of Health, under contract N01-CO-12400
文摘More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) - for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.
基金funded by the Ministry of Science and Technology Support Project(2008BAB96B11-3)the Guangxi Science Foundation of China(0728057)+1 种基金the Key Project of Technology Development Plan of Jilin Province(20080930)the Scientific Research Foundation for Introduction of Talent, Jilin University,Faculty of Agriculture(4305050102C1)
文摘[ Objective] To screen a suitable serum dilution and determine the normal range of antibodies against rabies viruses (RV) in dog serum. [Method]A sensitive, specific and suitable serum dilution was screened. A total of 812 dog serum samples were collected from Changchun, Nanning and Uuzhou regions, and then they were diluted with above screened serum dilution and evaluated by indirect enzyme-linked immunosorbont assay (ELISA). The positive and negative standard dog sara from the World Organization for Animal Health (OIE) were used as controls. The serum samples with different A450 were randomly selected and the anti-RV serum titers were detected by rapid fluorescent focus inhibition test (RFFIT). According to the A450 of dog sera, the normal A450 range of negative serum and 95% confidence intervals were calculated with SPSS 10.0 software, and the regression equation of OIE standards was established. [ Result] The screened serum dilution was sensitive and specific; at least 756 negative serum samples were obtained; the normal range and 95% confidence interval of negative serum were 0.127 3 ± 0.059 8 and 0.078 1 -0.172 3, respectively; and the regression equation was A450 = 1.139 serum titer (IU) ±0.470. [ Conclusion] These results lay a foundation for thecontrolling of dog rabies endemic and the development of ELISA kits of dog antibodies against RV.
文摘Layer chickens were immunized with three species of inactivated orthopox virus (vaccinia virus, calpox virus and cowpox virus). Antibodies (IgY) were purified from egg yolks by improved polyethylene glycol precipitation. The development of IgY directed against orthopox virus antigens was followed by immunofluorescence assay, plaque reduction neutraliztion test and immunoelectron microscopy. Cross-reactivity of two IgY antibodies with cells infected by the different strains of the pox viruses was also investigated by different methods (immunofluorescence assay, plaque reduction neutraliztion test and Western blot). Even in very high dilutions in immunofluorescence assay (titres up to 1:10^6 and 1:10^5, respectively) and persisted on a plateau over 10 months after four booster injections, it was showed that anti-vaccinia virus IgY and anti-calpox virus IgY were positive. Neutralizing activity and ultra-structural detection of antigen with gold-labelled antibodies were respectively observed in plaque reduction neutralization test and immunoelectron microscopy. Western blot analysis revealed specific binding of IgY to virus proteins. Thus, there was cross-reactivity between different orthopox viruses. Finally, orthopox virns-specific IgY antibodies bounded magnetic beads (Dynabead) were used to concentration of orthopox viruses. This study suggests that anti-pox virus IgY could serve as a useful tool for orthopox viruses diagnosis.
文摘AIM To prepare hybridoma cell lines which secrete anti HCV recombinant NS3 and NS5 proteins′ monoclonal antibodies, and to evaluate their usage in the study of the distribution of HCV NS3 and NS5 antigen in liver tissues. METHODS The hybridoma cell lines were raised using the spleen cells of BALB/C mouse immunized with recombinant NS3 and NS5 proteins according to the conventional protocols. The antibody secreting cells were screened using solid phase ELISA and cloned by limited dilution method. In order to determine the specificity of these hybridoma cell lines, the culture supernatant of these cells was western blot assayed with expression and nonexpresion E. coli and ELISA with other antigens, including HCV core and NS3 and HBsAg. Immunohistochemistry of 51 cases paraffin embedded liver tissues was performed to determine the distribution of HCV NS5 antigen as well as NS3 antigen in liver tissues. RESULTS Eight hybridoma cell lines secreting monoclonal antibodies against HCV NS3 and NS5 proteins were raised. They are named 2B6, 2F3, 3D8, 3D9, 8B2, 6F11, 4C6 and 7D9. Among them only 2B6 against NS3 protein can react with the polypipetides of C7 that is another recombinant polypipetides of NS3 gene. Others have no reaction with HCV core and HBsAg of HBV, and there is no cross reaction between NS3Ag and anti NS5Ag McAb and between NS5Ag and anti NS3 McAb. The immunohistochemistry results indicate that no HCV antigen was detected in the specimens of HBV infection in 20 cases. In 31 HCV infected specimens the positive rate of NS3Ag and NS5Ag are 51 6% (16/31) and 54 9% (17/31), respectively. There were six pure HCV infected specimens in these 31 specimens and half of them were HCV NS3Ag and NS5Ag positive. In the co infection of HBV and HCV group the positive rate of NS3Ag and NS5Ag were 52% (13/25) and 56% (14/25), respectively, almost the same with that of pure HCV infected group. The positive rates of HCV antigens were 70 6% (12/17) and 76 5% (13/17) in CAC patients. CONCLUSION The monoclonal antibodies we prepared are specific to the recombinant HCV NS3 and NS5 proteins and can be used in the clinical immunohistochemistry diagnosis.
基金supported by the National Natural Science Foundation of China(31272015)the National Basic Research Program(973)of China(2014CB138400)the Special Fund for Agro-scientific Research in the Public Interest,China(201303021,201303028)
文摘Aphid-borne Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses of cucurbitaceous plants. To survey and control this virus, it is necessary to develop an efficient detection technique. Using purified ZYMV virion and the conventional hybridoma technology, three hybridoma cell lines (16A11, 5A7 and 3B8) secreting monoclonal antibodies (MAbs) against ZYMV Zhejiang isolate were obtained. The working titers of the ascitic fluids secreted by the three hybridoma cell lines were up to 10^-7 by indirect enzyme-linked immunosorbent assay (ELISA). All MAbs were isotyped as IgG1, kappa light chain. Western blot analysis indicated that the MAb 3B8 could specifically react with the coat protein of ZYMV while MAbs 5A7 and 16A11 reacted strongly with a protein of approximately 51 kDa from the ZYMV-infected leaf tissues. According to this molecular weight, we consider this reactive protein As likely to be the HC-Pro protein. Using these three MAbs, we have now developed five detection assays, i.e., antigen-coated-plate ELISA (ACP-ELISA), dot-ELISA, tissue blot-ELISA, double-antibody sandwich ELISA (DAS-ELISA), and immunocapture-RT-PCR (IC-RT-PCR), for the sensitive, specific, and easy detection of ZYMV. The sensitivity test revealed that ZYMV could be readily detected respectively by ACP-ELISA, dot-ELISA, DAS-ELISA and IC-RT-PCR in 1:163840, 1:2560, 1:327680 and 1:1 310720 (w/v, g mL-1) diluted crude extracts from the ZYMV-infected plants. We demonstrated in this study that the dot-ELISA could also be used to detect ZYMV in individual viruliferous aphids. A total of 275 cucurbitaceous plant samples collected from the Zhejiang, Jiangsu, Shandong and Hainan provinces, China, were screened for the presence of ZYMV with the described assays. Our results showed that 163 of the 275 samples (59%) were infected with ZYMV. This finding indicates that ZYMV As now widely present in cucurbitaceous crops in China. RT-PCR followed by DNA sequencing and sequence analyses confirmed the accuracy of the five assays. We consider that these detection assays can significantly benefit the control of ZYMV in China.
基金support by National Key Technology R&D Program of China (2013BAD12B05)
文摘Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronavifidae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapul- monary manifestations. Currently, there are no approved treatment regimens or vaccines for MERS. Here~ we generated recombinant nonvirulent Newcastle disease virus (NDV) LaSota strain expressing MERS-CoV S protein (designated as rLa- MERS-S), and evaluated its immunogenicity in mice and Bactrian camels. The results revealed that rLa-MERS-S showed similar growth properties to those of LaSota in embryonated chicken eggs, while animal immunization studies showed that rLa-MERS-S induced MERS-CoV neutralizing antibodies in mice and camels. Our findings suggest that recombinant rLa- MERS-S may be a potential MERS-CoV veterinary vaccine candidate for camels and other animals affected by MERS.
基金Inserm, France Université Louis Pasteur, France+3 种基金the European Union (Virgil Network of Excellence)the DeutscheForschungsgemeinschaft (Ba1417/11-1), Germanythe ANRchair of excellence program and ANRS, FranceInserm "PosteVert" research fellowship in the framework of Inserm EuropeanAssociated Laboratory Inserm U748-Department of Medicine Ⅱ,University of Freiburg, Germany
文摘Hepatitis C virus (HCV) is a major cause of hepatitis world-wide. The majority of infected individuals develop chronic hepatitis which can then progress to liver cirrhosis and hepatocellular carcinoma. Spontaneous viral clearance occurs in about 20%-30% of acutely infected individuals and results in resolution of infection without sequaelae. Both viral and host factors appear to play an important role for resolution of acute infection. A large body of evidence suggests that a strong, multispecific and long-lasting cellular immune response appears to be important for control of viral infection in acute hepatitis C. Due too the lack of convenient neutralization assays, the impact of neutralizing responses for control of viral infection had been less defined. In recent years, the development of robust tissue culture model systems for HCV entry and infection has finally allowed study of antibody-mediated neutralization and to gain further insights into viral targets of host neutralizing responses. In addition, detailed analysis of antibody-mediated neutralization in individual patients as well as cohorts with well defined viral isolates has enabled the study of neutralizing responses in the course of HCV infection and characterization of the impact of neutralizing antibodiesfor control of viral infection. This review will summarize recent progress in the understanding of the molecular mechanisms of antibody-mediated neutralization and its impact for HCV pathogenesis.
基金grants from the Natural Science Foundation of Hubei Province(No.2018CFB749 and No.2018ADC073)the Scientific Research Fund of Union Hospital,Tongji Medical College,Huazhong University of Science and Technology(No.02.03.2017-292 and No.02.03.2017-327)General Project of Hubei Health Committee(No.02.07.19030018).
文摘The study investigated the distribution of Epstein-Barr virus(EBV)EA-IgA,VCAIgA,and EBVNA-IgG antibodies in a local population of Wuhan,China.Chemiluminescence immunoassay(CL1A)was used to detect EBV EA-IgA,VCA-IgA,and EBVNA-IgG antibodies in 972 subjects undergoing physical examination in Wuhan,and the results were analyzed.The detection rate of EBV was positively correlated with age.In the 972 cases,there was significant difference between different genders in the positive rate of VCA-IgA and EBVNA-IgG.Moreover,the positive rate of VCA-IgA and EBVNA-IgG was higher in men>60 years old than in those<60 but no significant differences were found in three antibodies among various age groups.Our results suggested that the EBV infection should be intensively monitored in elderly people in Wuhan.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest from the Ministry of Agriculture,China(201003065)
文摘Tomato yellow leaf curl virus(TYLCV)is a species of the family Geminiviridae,causing serious yield losses in tomato production.The coat protein(CP)gene of TYLCV isolate SH2 was expressed in Escherichia coli BL21(DE3)using pET-32a as the expression vector.The recombinant protein was purified through Ni+-NTA affinity column and used to immunize BALB/c mice.Three hybridoma cell lines(2B2,2E3 and 3E10)secreting monoclonal antibodies(MAbs)against TYLCV CP were obtained by fusing mouse myeloma cells(Sp 2/0)with spleen cells from the immunized BALB/c mouse.The titers of ascitic fluids of three MAbs ranged from 10-6 to 10-7 in indirect-ELISA.Isotypes and subclasses of all the MAbs belonged to IgG1,κ light chain.Triple antibody sandwich enzyme-linked immunosorbent assay(TAS-ELISA)showed that the MAb 3E10 could react with five begomoviruses infecting tomato,while the other two(2B2 and 2E3)mainly reacted with TYLCV.TAS-ELISA was set up using the MAb 3E10,and the established method could successfully detect virus in plant sap at 1:2 560(w/v,g mL-1).Detection of field samples showed that begomoviruses were common in tomato crops in Zhejiang Province,China.
基金National Department Public Benefit Research Foundation (201103032)Pathogens Network Monitoring Technology Research (2008ZX10004-008)
文摘To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection, anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rabies virus vaccine strain (PV strain) were used as immunogens to immunize 6-8 week old female BALB/c mice. Spleen cells and SP2/0 myeloma cells were fused according to conventional methods: the monoclonal cell strains obtained were selected using the indirect immunofluorescence test; this was followed by preparation of monoclonal antibody ascitic fluid; and finally, systematic identification of subclass, specificity and sensitivity was carried out. Two high potency and specific monoclonal antibodies against rabies virus were obtained and named 3B12 and 4A12, with ascitic fluid titers of 1:8000 and 1:10000, respectively. Both belonged to the IgG2a subclass. These strains secrete potent, stable and specific anti-rabies virus monoclonal antibodies, which makes them well suited for the development of rabies diagnosis reagents.
基金supported by the Natural Science Foundation of Heilongjiang Province,China(JQ2019C005)the National Natural Science Foundation of China(31702265 and 32172847)。
文摘Monoclonal antibodies(mAbs) are widely used in virus research and disease diagnosis. The nucleoprotein(NP) of influenza A virus(IAV) plays important roles in multiple stages of the virus life cycle. Therefore, generating conserved mAbs against NP and characterizing their properties will provide useful tools for IAV research. In this study, two mAbs against the NP protein, 10 E9 and 3 F3, were generated with recombinant truncated NP proteins(NP-1 and NP-2) as immunogens. The heavy-chain subclass of both 10 E9 and 3 F3 was determined to be IgG2α, and the light-chain type was κ. Truncation and site-specific mutation analyses showed that the epitopes of mAbs 10 E9 and 3 F3 were located in the N terminal 84–89 amino acids and the C terminal 320–324 amino acids of the NP protein, respectively. We found that mAbs 10 E9 and 3 F3 reacted well with the NP protein of H1–H15 subtypes of IAV. Both 10 E9 and 3 F3 can be used in immunoprecipitation assay, and 10 E9 was also successfully applied in confocal microscopy. Furthermore, we found that the 10 E9-recognized _(84) SAGKDP_(89) epitope and 3 F3-recognized 320 ENPAH324 epitope were highly conserved in NP among all avian and human IAVs. Thus, the two mAbs we developed could be used as powerful tools in the development of diagnostic methods of IAV, and also surely promote the basic research in understanding the replication mechanisms of IAV.
文摘Flounder gill (FG) cells were used to isolate lymphocystis disease virus (LCDV) and two monoclonal antibodies (Mabs) (1A8 and 3G3) against LCDV were used to trace LCDV infection to FG cells. FG monolayer cells was inoculated with LCDV supernatant, obtained from lymphocystis cells of diseased flounder, Paralichthys olivaceus. LCDV infection was detected with Mabs employing immunocytochemical assay (ICA) and indirect immunofluorescence assay test (IIFAT) technique. Detected by IIFAT, they were specifie for LCDV. The results of experimental infection illustrated that FG cells was sensitive to LCDV, and showed virus-infection positive detected by ICA. Cytopathic effect (CPE) occurred 1-2 days post inoculation (PI), and half tissue culture infection dosage (TCID50) of vires supematant was 2^2.57 per 40μl. Tracing by IIFAT showed that LCDV positive signal first appeared at the cell membrane immediately PI, and then in cytoplasm at 24h PI, it reached the strongest positive at 48-72 h PI, and began to decrease at 96h PI.
基金supported by the General Program of the National Natural Science Foundation of China[No.31570162]the National Key Research Program[No.2016YFC1200200].
文摘Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.
文摘In chickens, infectious bronchitis (IB) is a major respiratory disease. The respiratory system is the primary multiplication site of IB virus (IBV), a coronavirus, after which the virus is distributed to other organs. Poultry farms sustain considerable economic damage due to IB outbreaks in flocks, since IB causes a severe reduction in weight gain in chicks. In the present study, we produced the ostrich IgY against IBV by immunizing female ostriches with the IB viral antigens. The resultant purified IgY showed a strong neutralizing activity against IBV infection of cultured primary chick kidney cells. The infectivity of IBV was markedly inhibited in the trachea of chicks when ostrich IgY was injected intra-muscularly into newly hatched chicks prior to viral inhalation challenge at two weeks of age. Furthermore, the infection was strongly blocked in the tracheae when IgY was injected into chicks at one day and one week of age, with viral inhalation performed at three weeks of age. These findings suggest that the injection of ostrich IgY can help protect young chicks from IBV infections. In south Asian and African countries, broiler chicks are sent to poultry market around 30 days of age, so it is important to prevent IB outbreaks in very young flocks. We strongly believe that ostrich IgY will be a powerful weapon against IB infection in poultry farms on a wide scale and also hope that these findings will aid in the development of antibody vaccines for new type corona viruses, SARS-CoV and MERS-CoV.
文摘Hepatitis C virus(HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies(m Ab) of mice are predominantly used for the immunodiagnosis of several viral,bacterial,and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mA b are used in the immunotherapy of several blood malignancies,such as lymphoma and leukemia,as well as for autoimmune diseases. In this review article,we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mA b in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV,which is a major health problem throughout the world,particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mA b. Finally,we will discuss available and new trends to produce antibodies,such as egg yolk-based antibodies(Ig Y),production in transgenic plants,and the synthetic antibody mimics approach.
文摘In the present study,a total of 24 MAbs were produced against bluetongue virus (BTV) by polyethyleneglycol (PEG) mediated fusion method using sensitized lymphocytes and myeloma cells. All these clones were characterized for their reactivity to whole virus and recombinant BTV-VP7 protein,titres,isotypes and their reactivity with 24 BTV-serotype specific sera in cELISA. Out of 24 clones,a majority of them (n = 18) belong to various IgG subclasses and the remaining (n = 6) to the IgM class. A panel of eight clones reactive to both whole BTV and purified rVP7 protein were identified based on their reactivity in iELISA. For competitive ELISA,the clone designated as 4A10 showed better inhibition to hyperimmune serum of BTV serotype 23. However,this clone showed a variable percent of inhibition ranging from16.6% with BTV 12 serotype to 78.9% with BTV16 serotype using 24 serotype specific sera of BTV originating from guinea pig at their lowest dilutions. From the available panel of clones,only 4A10 was found to have a possible diagnostic application.
基金Supported by Youth Fund of Hubei Academy of Agricultural Sciences(2013NKYJJ12)
文摘Japanese encephalitis (JE) is a central nervous system disease caused by Japanese encephalitis virus (JEV), which can infect human and a variety of animals and cause irreversible nerve damages. NS3 protein plays an important role in the process of JEV polyprotein hydrolysis, which is essential for JEV replication. Therefore, NS3 protein may be used as a potential drug target to treat Japanese encephalitis. In this study, the pET-28a-NS3 plasmid was successfully constructed and expressed in E. coli BL21 ( DE3 ) under IPTG induction. The molecular weight of the expressed recombinant protein was 55 ku, which was consistent with the expected result. The positive serum was prepared by immunizing BALB/c mice with NS3 protein and identified by indirect immunofluorescence (IFA). The results showed that there was a fluorescence reaction between the prepared positive serum of NS3 protein and cells infected with JEV.
文摘[ Objective] To develop an indirect ELISA assay for detecting antibodies against envelope glycoprotein ( E protein) of Japanese encephalitis virus (JEV). [ Method] Specific primers were designed according to JEV sequences published in the GenBank. The cDNA of JEV E gene (about 1 000 10p) was amplified by the RT-PCR with the specific primers. After sequencing analysis, the E gene was cloned into pET30a expression vector and expressed in E. coli BL21 (DE3) with the induction of IPTG. After denaturation, purification and renaturation, the recombinant protein was analyzed by the SDS-PAGE and the westem blotting. An indirect ELISA was developed to detect antibodies against JEV. [ Result] The E protein was mainly expressed in inclusion body. With the purified E protein, the indirect ELISA was developed and displayed good specificity, sensitivity and repeatability, [ Conclusion]The developed ELISA using the truncated E protein as antigen is a simple, convenient and rapid serological method for diagnosis, monitoring antibody level and epidemiological investigation of JEV.