With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic pa...In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic parameters( amplitude ratio and phase change)are extracted. We analyzed the features of the shape and stage change,and characteristic parameters of the tidal response of well water level before and after the earthquakes,which can provide a new method and approach to analyzing the response relationships between well water level and earth tide and barometric pressure. The results show that Luguhu Well and 9 other wells are affected by earth tides,and their well water level amplitude ratios and phases are relatively stable; the Nanxi Well and Dayao Well water level changes are affected by the barometric pressure combined with tide force,and their well water level amplitude ratios and phases are more discrete. The water level amplitude ratios and phases of Jiangyou Well,Luguhu Well and Dongchuan Well are significant to large earthquakes,and the relationship between seismic energy density and water level amplitude ratios and phases of M_2 wave of the three wells are presented.展开更多
Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is com...Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.展开更多
Bangladesh is a floodplain dominated country. Coastal delta areas of Bangladesh convey multiple impacts of climate change worth-hit. Most of the rivers carry a huge amount of sediment from upstream piedmont area. The ...Bangladesh is a floodplain dominated country. Coastal delta areas of Bangladesh convey multiple impacts of climate change worth-hit. Most of the rivers carry a huge amount of sediment from upstream piedmont area. The river bed rises due to insufficient upstream water supply. Similarly, the deposited sedimentation creates a large number of sandbars inside the river. That’s why, water logging and siltation turn into a serious problem in the south-western region of Bangladesh, especially in Satkhira, Khulna and Jessore district. In the middle of September, 2011 the Tidal River Management (TRM) project approved at the study site for four years to develop the water logging problem with basic consideration of silt management. In this circumstance, this study focused on the consequences of the TRM on water logging in the coastal area of Bangladesh. Primary and secondary data have been used. Geospatial analyses have been used following the NDWI in Arc GIS for water logging area detestation using Landsat Enhance Thematic Mapper (ETM) and Landsat Operational land Image (OLI) satellite images. The geo-spatial analysis denoted, about 5090 acres of agricultural land and about 729 acres of homestead land have been water logged during TRM implementation period.展开更多
Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to ...Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.展开更多
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
基金sponsored by the Spark Program of Earthquake Technology of CEA in 2017(XH17026)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(162205)
文摘In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic parameters( amplitude ratio and phase change)are extracted. We analyzed the features of the shape and stage change,and characteristic parameters of the tidal response of well water level before and after the earthquakes,which can provide a new method and approach to analyzing the response relationships between well water level and earth tide and barometric pressure. The results show that Luguhu Well and 9 other wells are affected by earth tides,and their well water level amplitude ratios and phases are relatively stable; the Nanxi Well and Dayao Well water level changes are affected by the barometric pressure combined with tide force,and their well water level amplitude ratios and phases are more discrete. The water level amplitude ratios and phases of Jiangyou Well,Luguhu Well and Dongchuan Well are significant to large earthquakes,and the relationship between seismic energy density and water level amplitude ratios and phases of M_2 wave of the three wells are presented.
文摘Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.
文摘Bangladesh is a floodplain dominated country. Coastal delta areas of Bangladesh convey multiple impacts of climate change worth-hit. Most of the rivers carry a huge amount of sediment from upstream piedmont area. The river bed rises due to insufficient upstream water supply. Similarly, the deposited sedimentation creates a large number of sandbars inside the river. That’s why, water logging and siltation turn into a serious problem in the south-western region of Bangladesh, especially in Satkhira, Khulna and Jessore district. In the middle of September, 2011 the Tidal River Management (TRM) project approved at the study site for four years to develop the water logging problem with basic consideration of silt management. In this circumstance, this study focused on the consequences of the TRM on water logging in the coastal area of Bangladesh. Primary and secondary data have been used. Geospatial analyses have been used following the NDWI in Arc GIS for water logging area detestation using Landsat Enhance Thematic Mapper (ETM) and Landsat Operational land Image (OLI) satellite images. The geo-spatial analysis denoted, about 5090 acres of agricultural land and about 729 acres of homestead land have been water logged during TRM implementation period.
基金supported by National Natural Science Foundation of China(40674024 and 40374019)
文摘Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.