The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation ...The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation is carried out on a rectangular grid using Delft3D.The tidal current energy potential of the major channels in the Bohai Strait is further simulated and estimated by comparing the simulated and measured data.Results show that the flow module in Delft3D has good modeling ability for the assessment of tidal current energy potential.The average flow velocity,maximum flow velocity,and energy flow density are consistent.The Laotieshan Channel,located in the northern part of the Bohai Strait,shows a large tidal current energy potential.The maximum flow velocity of this channel can reach 2 m s-1,and the maximum energy flow density can exceed 500 W m-2.The tidal current energy in the Laotieshan Channel is more than 10 times that in other channels.Therefore,this study advocates for the continued exploration and exploitation of the tidal current energy resources in the Laotieshan Channel.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
In the present study, an existing three-dimensional finite volume computational ocean model (FVCOM) was refined and configured including an algorithm for computing the power density and mean power density at Qiongzh...In the present study, an existing three-dimensional finite volume computational ocean model (FVCOM) was refined and configured including an algorithm for computing the power density and mean power density at Qiongzhou Strait of China. The refined model was validated with the measured tidal levels and tidal currents at different gauging stations. The model results are in reasonable agreement with the measured data. Based on the modeling results, we assess the resource of the tidal stream energy in the Qiongzhou Strait and discuss the temporal and the spatial distribution of the tidal current energy there. The conclusion is extracted: the higher power density occurs in the middle area of the strait, and lower at both sides. Characteristics of power density such as the maximum possibility speed, maximum power density during the spring tide period and the neap tide period, have the similar distribution. The southeast part and central area of the strait are of rich tidal current energy, where the maximum possibility speed can reach to 4.6 m/s, and the maximum power density of the spring tide period and the neap tide period can reach 5 996 and 467 W/mz separately in the surface layer The annual mean power density can reach 819 W/m2. Statistical length of accumulative time of the velocity exceeding 0.7 m/s is about 4 717 h at local point during a year. The total theoretical tidal current energy resource is approximately 189.55 MW and the available exploited energy on present technology condition is 249, 20.2 and 263 GW/a separately by using the methods FLUX, FARM and GC in the Qiongzhou Strait.展开更多
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car...To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.展开更多
An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region name...An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region named PuHu Channel between Putuo Island and Hulu Island.The model was calibrated with several measurements in the channel,and the model perform-ance was validated.An examination of the spatial and temporal distributions of tidal energy resources based on the numerical simula-tion revealed that the greatest power density of tidal energy during spring tide is 3.6kWm^(−2)at the northern area of the channel.Two parameters were introduced to characterize the generation duration of the tidal array that causes the temporal variation of tidal current energy.The annual average available energy in the channel was found to be approximately 2.6MW.The annual generating hours at rated power was found to be 1800 h when the installed capacity of tidal array is approximately 12MW.A site for the tidal array with 25 turbines was selected,and the layout of the array was configured based on the EMEC specifications.Hydrodynamic influence due to the deployment of the tidal array was simulated by the modified FVCOM model.The simulation showed that the tidal level did not significantly change because of the operation of the tidal array.The velocity reduction covered a 2km^(2)area of the downstream the tidal array,with a maximum velocity reduction of 8cms−1 at mid-flood tide,whereas the streamwise velocity on both sides of the farm increased slightly.展开更多
ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of s...ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of small wavelets to small waves. The problem is that the high rotational motion responses of the catamaran due to wave loads tend to reduce the turbine performance. This paper looks for a possibility to deteriorate these rotational responses by introducing a platform with four buoyant legs referred to as a quad-spar considering its good stability performance.The platforms are moored by four catenary cables as their mooring system. The motion response modeling was undertaken by Computational Fluid Dynamic(CFD) simulation based on three-dimensional potential flow theory.Considering sea states of straits with typical tidal current energy potentials, the environmental load was set on random wave with the significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s corresponding to the wave frequency,, of about 1.1 to 4.2 rad/s. This study found that lower motion responses can be satisfied by the quad-spar, in which its yaw, roll and pitch responses are on average about 5%, 44%, and 38%,respectively, compared to those of the catamaran. This result indicates that the quad-spar is more effective in reducing rotational motion responses needed to keep a high performance of the tidal current energy system.展开更多
This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A control...This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A controller was applied to achieve the maximum power control of tidal current turbine on a wide range of water current speed change. A dynamic model and simulation of the energy system coupled with current change are presented. The measured DC voltage and DC current are used to determine the position of maximum power point that controls the DC/DC boost converter duty cycle depending on the Hill Climb Search (HCS) algorithm. This algorithm doesn’t require any information or measurements about current’s speed change or generator’s characteristics. A supercapacitor added to fix the load voltage despite of tidal current speed or load variations. Simulation results show the effectiveness of the controller proposed system.展开更多
Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy...Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.展开更多
Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend ...Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a l/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.展开更多
Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their r...Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.展开更多
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool t...Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the in...The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.展开更多
This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady ...This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.展开更多
In this paper, experiments of both the model turbine (1 kW) and the full scale (10 kW) turbine are carried out in a towing tank and a basin, respectively, and the test of the full scale turbine on the sea is condu...In this paper, experiments of both the model turbine (1 kW) and the full scale (10 kW) turbine are carried out in a towing tank and a basin, respectively, and the test of the full scale turbine on the sea is conducted. By comparison between the model turbine (D = 0.7 m) and the full scale turbine (D = 2.0 m), it is shown that the maximum power coefficient increases with the increase of the diameter of the turbine. The test results on the sea are used to study the hydrodynamic performances of the horizontal axis turbine, and provide a basis for the design. Experimental results can validate the accuracy of the numerical simulation results.展开更多
In this paper,a method is proposed to improve the energy efficiency of the vertical axis turbine.First of all,a single disk multiple stream-tube model is used to calculate individual fitness.Genetic algorithm is adopt...In this paper,a method is proposed to improve the energy efficiency of the vertical axis turbine.First of all,a single disk multiple stream-tube model is used to calculate individual fitness.Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective.Then,a particular data processing method is proposed,fitting the result data into a cosine-like curve.After that,a general formula calculating the blade motion is developed.Finally,CFD simulation is used to validate the blade pitch motion formula.The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion;compared with the fixed pitch turbine,the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control;the energy efficiency declines gradually with the growth of speed ratio;besides,compactness has lager effect on the blade motion while the number of blades has little effect on it.展开更多
The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine are investigated by combining experimental and numerical simulations. The variations of hydrodynamics are obtained based on testing t...The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine are investigated by combining experimental and numerical simulations. The variations of hydrodynamics are obtained based on testing the kinematics and the dynamics of the turbine under different flow and structural conditions. Through analyzing the movement of the turbine and the characteristics of the flow field by numerical simulations, it is shown how the turbine's performance is improved.展开更多
Ocean energy, considered as clean energy, is one kind of marine resources of great importance. Its development and utilization have become an indispensable part of national development strategy in China. Testingfields...Ocean energy, considered as clean energy, is one kind of marine resources of great importance. Its development and utilization have become an indispensable part of national development strategy in China. Testingfields are required when conducting tests of ocean energy generation devices in real sea, which is the key step conducted before engineering prototypes transformed into scale industrialization applications. This paper introduces the construction and operation conditions of large-scale testing fields for wave energy and tidal current energy generation devices and presents a brief comparative analysis. Developing status and related technologies on testingfields for ocean energy power generation in China are also discussed. Furthermore, this paper investigates the necessity of grid-connected test for ocean energy generation and points out that the construction of ocean energy testingfields is helpful to ensure the efficient utilization of ocean energy resources.展开更多
Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be desi...Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be designed so as to obtain the least cost configuration.This is referred to as a tidal cable routing problem. This problem possesses several variants depending on the number of cable collector hubs. In this paper, these variants are modeled by employing the approach of the single depot multiple traveling salesman problem(mTSP) and the multiple depot mTSP of operational research for the single and multiple cable collector variants, respectively. The developed optimization models are computationally implemented using MATLAB. In the triple cable collector cable hub variant, an optimal solution is obtained, while good-quality suboptimal solutions are obtained in the double and single cable collector hub variants. In practice,multiple cable collector hubs are expected to be employed as the multiple-hub configurations tend to be more economic than the single-hub configurations.This has been confirmed by this paper for an optimal tidal turbine layout obtained with OpenTidalFarm. Suggestions are presented for future research studies comprising a number of heuristics.展开更多
基金supported by the Yantai Science and Technology Innovation Project (No.2023JCYJ097)the National Natural Science Foundation of China (No.51909114)。
文摘The utilization and development of tidal current energy can help alleviate the current energy shortage,improve the global ecological environment,and maintain sustainable development.In this study,numerical simulation is carried out on a rectangular grid using Delft3D.The tidal current energy potential of the major channels in the Bohai Strait is further simulated and estimated by comparing the simulated and measured data.Results show that the flow module in Delft3D has good modeling ability for the assessment of tidal current energy potential.The average flow velocity,maximum flow velocity,and energy flow density are consistent.The Laotieshan Channel,located in the northern part of the Bohai Strait,shows a large tidal current energy potential.The maximum flow velocity of this channel can reach 2 m s-1,and the maximum energy flow density can exceed 500 W m-2.The tidal current energy in the Laotieshan Channel is more than 10 times that in other channels.Therefore,this study advocates for the continued exploration and exploitation of the tidal current energy resources in the Laotieshan Channel.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
基金The Chinese Marine Renewable Energy Special Fund under contract Nos GHME2012ZC05 and GHME2013ZC03
文摘In the present study, an existing three-dimensional finite volume computational ocean model (FVCOM) was refined and configured including an algorithm for computing the power density and mean power density at Qiongzhou Strait of China. The refined model was validated with the measured tidal levels and tidal currents at different gauging stations. The model results are in reasonable agreement with the measured data. Based on the modeling results, we assess the resource of the tidal stream energy in the Qiongzhou Strait and discuss the temporal and the spatial distribution of the tidal current energy there. The conclusion is extracted: the higher power density occurs in the middle area of the strait, and lower at both sides. Characteristics of power density such as the maximum possibility speed, maximum power density during the spring tide period and the neap tide period, have the similar distribution. The southeast part and central area of the strait are of rich tidal current energy, where the maximum possibility speed can reach to 4.6 m/s, and the maximum power density of the spring tide period and the neap tide period can reach 5 996 and 467 W/mz separately in the surface layer The annual mean power density can reach 819 W/m2. Statistical length of accumulative time of the velocity exceeding 0.7 m/s is about 4 717 h at local point during a year. The total theoretical tidal current energy resource is approximately 189.55 MW and the available exploited energy on present technology condition is 249, 20.2 and 263 GW/a separately by using the methods FLUX, FARM and GC in the Qiongzhou Strait.
基金supported by the National Natural Science Foundation of China(Grant Nos.51309068,51309069,51579055 and 11572094)the Special Funded of Innovational Talents of Science and Technology in Harbin(Grant No.RC2014QN001008)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2014M561334 and 2015T80330)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z14060)
文摘To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.
基金This work was supported by the National Key R&D Program of China(Nos.2019YFE0102500,2019YFB1504401,2019YFE0102500 and 2016YFC1401800).The au-thors would like to thank the FVCOM Development Group for their modeling support.
文摘An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region named PuHu Channel between Putuo Island and Hulu Island.The model was calibrated with several measurements in the channel,and the model perform-ance was validated.An examination of the spatial and temporal distributions of tidal energy resources based on the numerical simula-tion revealed that the greatest power density of tidal energy during spring tide is 3.6kWm^(−2)at the northern area of the channel.Two parameters were introduced to characterize the generation duration of the tidal array that causes the temporal variation of tidal current energy.The annual average available energy in the channel was found to be approximately 2.6MW.The annual generating hours at rated power was found to be 1800 h when the installed capacity of tidal array is approximately 12MW.A site for the tidal array with 25 turbines was selected,and the layout of the array was configured based on the EMEC specifications.Hydrodynamic influence due to the deployment of the tidal array was simulated by the modified FVCOM model.The simulation showed that the tidal level did not significantly change because of the operation of the tidal array.The velocity reduction covered a 2km^(2)area of the downstream the tidal array,with a maximum velocity reduction of 8cms−1 at mid-flood tide,whereas the streamwise velocity on both sides of the farm increased slightly.
基金financially supported by the Education of Master Degree Leading to Doctoral Program for Excellent Bachelor(PMDSU) Scheme (Grant No. 807/PKS/ITS/2018)the Post-graduate (Dissertation) Scheme (Grant No. 1233/PKS/ITS/2020)the Basic Research Scheme (Grant No. 1096/PKS/ITS/2020)。
文摘ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of small wavelets to small waves. The problem is that the high rotational motion responses of the catamaran due to wave loads tend to reduce the turbine performance. This paper looks for a possibility to deteriorate these rotational responses by introducing a platform with four buoyant legs referred to as a quad-spar considering its good stability performance.The platforms are moored by four catenary cables as their mooring system. The motion response modeling was undertaken by Computational Fluid Dynamic(CFD) simulation based on three-dimensional potential flow theory.Considering sea states of straits with typical tidal current energy potentials, the environmental load was set on random wave with the significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s corresponding to the wave frequency,, of about 1.1 to 4.2 rad/s. This study found that lower motion responses can be satisfied by the quad-spar, in which its yaw, roll and pitch responses are on average about 5%, 44%, and 38%,respectively, compared to those of the catamaran. This result indicates that the quad-spar is more effective in reducing rotational motion responses needed to keep a high performance of the tidal current energy system.
文摘This paper proposes control of maximum power tracking system of tidal current energy system. A permanent magnet synchronous generator (PMSG) works as a variable speed generator in the proposed energy system. A controller was applied to achieve the maximum power control of tidal current turbine on a wide range of water current speed change. A dynamic model and simulation of the energy system coupled with current change are presented. The measured DC voltage and DC current are used to determine the position of maximum power point that controls the DC/DC boost converter duty cycle depending on the Hill Climb Search (HCS) algorithm. This algorithm doesn’t require any information or measurements about current’s speed change or generator’s characteristics. A supercapacitor added to fix the load voltage despite of tidal current speed or load variations. Simulation results show the effectiveness of the controller proposed system.
基金supported by the National Natural Science Foundation of China(Grants No.51079072 and 51279088)the National High Technology Research and Development Program of China(Grant No.2012AA052602)the Tsinghua University Initiative Scientific Research Program(Grant No.20101081791)
文摘Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521064)the National High Technology Research and Development of China(863 Program,Grant No.2011AA050201)+2 种基金the Natural Science Foundation of Zhejiang Province(Grant No.LY14E050019)the Youth Funds of the State Key Laboratory of Fluid Power Transmission and Control SKLo FP_QN_1401the special funds of state oceanic renewable energy(Grant No.GHME2013ZB03)
文摘Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a l/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.
文摘Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.
基金the financial support provided by the National Natural Science Foundation of China (51279190 and 51311140259)National High Technology Research and Development Program of China (863 Project,2012AA052601)+2 种基金Shandong Natural Science Funds for Distinguished Young Scholar (JQ201314)Qingdao Municipal Science & Technology Program (13-4-1-38hy and 14-9-1-5-hy)the Program of Introducing Talents of Discipline to Universities (111 Project,B14028)
文摘Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金supported by the National Natural Science Foundation of China(Grant No.51106034)the Central Universities Fundamental Research Foundation(Grant No.HEUCFR1104)the Marine Renewable Energy Special Foundation(Grant Nos.ZJME2010CY01 and ZJME2010GC01)
文摘The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
文摘This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51409057,51579055)the Resea-rch Fund for the Doctoral Program of Higher Education of China(Grant No.20132304110009)the Natural Science Foundation of Heilongjiang Province(Grant No.E2015048)
文摘In this paper, experiments of both the model turbine (1 kW) and the full scale (10 kW) turbine are carried out in a towing tank and a basin, respectively, and the test of the full scale turbine on the sea is conducted. By comparison between the model turbine (D = 0.7 m) and the full scale turbine (D = 2.0 m), it is shown that the maximum power coefficient increases with the increase of the diameter of the turbine. The test results on the sea are used to study the hydrodynamic performances of the horizontal axis turbine, and provide a basis for the design. Experimental results can validate the accuracy of the numerical simulation results.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309069)the Special Funded of Innovational Talents of Science and Technology in Harbin(Grant No.RC2014QN001008)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M561334)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z14060)
文摘In this paper,a method is proposed to improve the energy efficiency of the vertical axis turbine.First of all,a single disk multiple stream-tube model is used to calculate individual fitness.Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective.Then,a particular data processing method is proposed,fitting the result data into a cosine-like curve.After that,a general formula calculating the blade motion is developed.Finally,CFD simulation is used to validate the blade pitch motion formula.The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion;compared with the fixed pitch turbine,the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control;the energy efficiency declines gradually with the growth of speed ratio;besides,compactness has lager effect on the blade motion while the number of blades has little effect on it.
基金Project supported by the National Natural Science Foundation of China(Grant No.51106034)the Marine Renewable Energy Special Foundation(Grant No.ZJME2010CY01)
文摘The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine are investigated by combining experimental and numerical simulations. The variations of hydrodynamics are obtained based on testing the kinematics and the dynamics of the turbine under different flow and structural conditions. Through analyzing the movement of the turbine and the characteristics of the flow field by numerical simulations, it is shown how the turbine's performance is improved.
基金supported by Marine RenewablesSpecial Funds(No.GHME2012ZC02)
文摘Ocean energy, considered as clean energy, is one kind of marine resources of great importance. Its development and utilization have become an indispensable part of national development strategy in China. Testingfields are required when conducting tests of ocean energy generation devices in real sea, which is the key step conducted before engineering prototypes transformed into scale industrialization applications. This paper introduces the construction and operation conditions of large-scale testing fields for wave energy and tidal current energy generation devices and presents a brief comparative analysis. Developing status and related technologies on testingfields for ocean energy power generation in China are also discussed. Furthermore, this paper investigates the necessity of grid-connected test for ocean energy generation and points out that the construction of ocean energy testingfields is helpful to ensure the efficient utilization of ocean energy resources.
基金supported by the funding for the OpTiCA project from the Marie Sklodowska-Curie Actions of the European Union’s H2020-MSCA-IF-EF-RI-2016/under REA grant agreement#[748747]
文摘Electrical power cables in tidal turbine farms contribute a significant share to capital expenditure(CAPEX). As a result, the routing of electrical power cables connecting turbines to cable collector hubs must be designed so as to obtain the least cost configuration.This is referred to as a tidal cable routing problem. This problem possesses several variants depending on the number of cable collector hubs. In this paper, these variants are modeled by employing the approach of the single depot multiple traveling salesman problem(mTSP) and the multiple depot mTSP of operational research for the single and multiple cable collector variants, respectively. The developed optimization models are computationally implemented using MATLAB. In the triple cable collector cable hub variant, an optimal solution is obtained, while good-quality suboptimal solutions are obtained in the double and single cable collector hub variants. In practice,multiple cable collector hubs are expected to be employed as the multiple-hub configurations tend to be more economic than the single-hub configurations.This has been confirmed by this paper for an optimal tidal turbine layout obtained with OpenTidalFarm. Suggestions are presented for future research studies comprising a number of heuristics.