Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this stu...Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this study,we proposed an alternative empirical approach to explore tidal flat dynamics using statistical indices based on long-term time series of daily surface elevation development.Surface elevation dynamic(SED)indices focus on the magnitude and period of surface elevation changes,while morphodynamic signature(MDS)indices relate sediment dynamics to environmental drivers.The statistical analyses were applied to an intervention site in the Netherlands to determine the effect of recently constructed groynes on the tidal flat.Using these analyses,we were able to(1)detect a reduction in the daily SED and(2)determine that the changes in the daily SED were predominantly caused by the reduction in wave impact between the groynes rather than the reduction in tidal currents.Overall,the presented results showed that the combination of novel statistical indices provides new insights into the trajectories of tidal flats,ecosystem functioning,and sensitivity to physical drivers(wind and tides).Finally,we suggested how the SED and MDS indices may help to explore the future trajectories and climate resilience of intertidal habitats.展开更多
Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial hab...Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial habitats around tidal flats as roosting sites during high-tide,it remains unclear whether the importance of surrounding habitats relative to tidal flats varies among landscape types,seasons,species,or tidal conditions.The Black-faced Spoonbill(Platalea minor)and Eurasian Spoonbill(P.leucorodia)are two closely related sympatric species in East Asia with narrow and wide distribution ranges and habitat requirements,respectively.We therefore expect that both species will use surrounding artificial habitats across seasons at high tides,but Blackfaced Spoonbills will use them less frequently than Eurasian Spoonbills.Here,we address these hypotheses in the Imazu tidal flat and its surrounding environments in southern Japan.We investigated the habitat use and behavioral patterns of both species through route and behavioral surveys during the fall migration and wintering seasons in 2021.We found that both species used surrounding habitats including artificial ones more frequently than the tidal flat regardless of the tidal condition or season,but spoonbills used these habitats more frequently in winter than in autumn.We also found that Eurasian Spoonbills foraged in surrounding artificial habitats more frequently than Black-faced Spoonbills.These results not only demonstrate how coastal waterbirds exploit surrounding habitats relative to tidal flats but also suggest that the importance of surrounding habitats varies among species and seasons.Our study thus emphasizes that valuing and managing surrounding habitats in addition to tidal flats are key to conserving globally declining waterbirds.展开更多
Seven cores were collected from different sediment zones of tidal flats at Xin- yanggang in north Jiangsu province in August 2007. Sediment grain-size distribution and radioisotopes of ^137Cs and ^210Ppb analysis were...Seven cores were collected from different sediment zones of tidal flats at Xin- yanggang in north Jiangsu province in August 2007. Sediment grain-size distribution and radioisotopes of ^137Cs and ^210Ppb analysis were carried out for these cores. Sediment rates of the cores and radioisotopes distribution in surface sediment in different zones of the tidal flat were calculated from the ^137Cs and ^210Ppb activities in sediments cores. The results indicated that each tidal zone had experienced different evolution phases, hydrological dynamics in the tidal flats made the grain-size of the surface sediment change gradually. ^137Cs and ^210Ppb activities on the superficial layer of the cores varied spatially and the reason was discussed. On tidal flats, the fluctuation of ^137Cs and ^210Ppb activities in the cores reflected the special sedimentary characteristics. Vegetation affects the grain-size distribution and the vertical profiles of ^137Cs and ^210Ppb in the upper depths. ^137Cs and ^210Ppb chronology got the comparable average sediment rates on the tidal flat. The characteristics of ^137Cs and ^210Ppb in the cores reflected various depositional dynamical environments in different tidal zones and gave information on the different evolvement phases of the tidal zones. Based on the information of grain-size distribution, texture of the cores, sediment rates and topography, the evolution lines of the tidal flat were reconstructed.展开更多
Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discusse...Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discussed. The results show that evolutions of tidal flats throughout the Huanghe River Delta are influenced by various factors, and that progressive succession and regression of tidal flats concur in different coastal segments of the delta. Human activities have played an increasingly important role in the succession process of tidal flats. Due to land reclamation in coastal zones of the delta in the last 15 years, lots of tidal flats were occupied, the artificial coastline migrated seaward (the maximum change rate was 0.8 kmyr-1) and tidal creeks became sparser (the highest decreasing rate of length of tidal creeks was 14.9 kmyr-1). Except for two coastal segments from the Tiaohe Estuary to the 106 Station and from the south of the Huanghe River mouth to the north of the Xiaodao River Estuary, fractal dimension values of tidal creeks in the remaining coastal segments of the delta decreased. In addition, the time dimension, sediment fluxes into the sea, waves and tidal-currents have profound influences on the evolution process of tidal flats. Four types of tidal flats-river-dominated tidal flats, tide-dominated tidal flats, wave-dominated tidal flats and man-dominated tidal flats can be identified. Owing to the intensification of human activities in coastal zones of the delta, man-dominated tidal flats have become the main kind of tidal flats.展开更多
The growth of tidal flats off Zhejiang coasts in southwestern China has provided substantial areas for local agriculture and construction activities.To evaluate modern and future development of tidal flats in the regi...The growth of tidal flats off Zhejiang coasts in southwestern China has provided substantial areas for local agriculture and construction activities.To evaluate modern and future development of tidal flats in the region,a good understanding of sediment sources is necessary.Previous research has concluded that the Changjiang(Yangtze)River is the dominant supplier of sediments to this part of the southeast Chinese coast,despite the fact that sediment delivery from this source has been decreased markedly in the past two decades.In this study,we investigated the sources of tidal flat sediments,and the magnetic and geochemical properties of recent tidal flat sediments along the Zhejiang coast were compared with those discharged from rivers.Magnetic and geochemical properties of the tidal flat samples reveal statistically distinct sediment provenance groups.The magnetic and geochemical scatter plots show that the suspended sediment samples are naturally divided into two different groups,one including the Changjiang River and Qiantang River material,and the other including the Jiaojiang,Oujiang,and Feiyun Rivers that located in the central and southern parts of the study areas.At last,a binary source of tidal flat sediments along the Zhejiang coast was determined,with the substantial majority originating from local rivers,while a much smaller proportion emanates from the Changjiang River to the north.We conclude that the sediment contribution of the Changjiang River to tidal flat development in the region has been markedly overestimated,with important implications for management.展开更多
The standing crop and primary production of benthic microalgae on tidal flats have seasonally been observed in the Sanggou and Jiaozhou Bays of the northern China coast during 1999 - 2000. The results show that the an...The standing crop and primary production of benthic microalgae on tidal flats have seasonally been observed in the Sanggou and Jiaozhou Bays of the northern China coast during 1999 - 2000. The results show that the annual primary productions of benthic microalgae on tidal flats in the two bays are 2 532 and 7 542 tons carbon, which would be able to support 3.1 x 103 and 9.2 x 103 tons shellfish meat, respectively. The nature of sediment is essential for governing the biomass and primary production of benthic microalgae on tidal flats. The biomass and primary production of benthic microalgae on tidal flats with muddy sediments are higher than those with sandy sediments, which resulted from higher nutrient concentration and lower grazing pressure. That is the reason why in comparison with Xiangshan Bay the standing crop and production of benthic microalgae on tidal flats of the Sanggou and Jiaozhou Bays are low. Light was a key factor controlling vertical distribution of biomass and production of benthic microalgae on tidal flats of the two bays, resulted in appearance of maximum chlorophyll a and primary production at the surface layer and sharply decreased with depth of sediment.展开更多
More than 904.2 km2 of the flats are above the theorotical datum level with progressive rate of 20-200 m/a to the sea in Shanghai. Since the reclaimed land is vital important to the city, multiple approaches to accele...More than 904.2 km2 of the flats are above the theorotical datum level with progressive rate of 20-200 m/a to the sea in Shanghai. Since the reclaimed land is vital important to the city, multiple approaches to accelerating siltation are proposed in the paper according to detailed study of dynamics, sedimentary structure and landform evolution based on plentiful in situ data. It is of great significance to utilize tidal flats and reclamation of land in Shanghai.展开更多
Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index...Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index(Igeo) and factor analysis were introduced to evaluate sediment quality and source of contaminants. The mean concentrations of Hg, Cu, Pb, Zn, Cd, Cr, and oil in the surface sediments in the study area are 0.033, 17.756, 19.121, 55.700, 0.291, 59.563, and 14.213 μg g-1, respectively. The heavy metal contamination in the old delta lobe is slightly higher than that in the abandoned delta lobe; however, the opposite was observed for oil pollution. The Igeo results revealed that the overall quality of the surface sediments in the study area is in good condition. The heavy metal pollution levels show a descending order: Cd> Hg> Cr> Cu> Zn> Pb, Cd being the main pollutant. The contamination level for in the study area is relatively lower than those for China's other tidal flats. Heavy metals are mainly derived from natural sources of rock weathering and erosion, partly influenced by industrial and agricultural discharge. However, oil pollution is mainly from runoff input, motorized fishing boat sewage, and oil exploitation.展开更多
Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity ...Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.展开更多
The standing stock and primary production of benthic microalgae on tidal flats were measured seasonally at 3 transects (Puqing, Dahengchuang and Puqi) in Yueqing Bay during 2002 2003. The results showed that the integ...The standing stock and primary production of benthic microalgae on tidal flats were measured seasonally at 3 transects (Puqing, Dahengchuang and Puqi) in Yueqing Bay during 2002 2003. The results showed that the integral chlorophyll a (Chl a) concentration in tidal flat mud exhibited a seasonal variation with the order of magnitude: winter (14.0 4.2 mg m-2) > spring (13.0 6.3 mg m-2) > autumn (7.7 5.9 mg m-2) > summer (4.6 3.2 mg m-2). The primary production showed an order of magnitude: spring (270.5 224.9 mgC m-2 d-1)>winter (238.7 225.5 mgC m-2 d-1)>autumn (214.1 56.2 mgC m-2 d-1)>summer (71.6 44.6 mgC m-2 d-1). Both chlorophyll a and primary production showed maximum values in the surface layer of sediment, and decreased rapidly with increasing depth due to sun light limitation. The results of variance analysis indicated that seasonal variation and tidal flat condition affected Chl a greatly, but had no significant effect on primary production. The annual primary production of benthic microalgae on tidal flats in Yueqing Bay was estimated at 16143 tons carbon, which is sufficient to support 1.02×105 tons shellfish production. The environmental factors affecting chlorophyll and primary production on the tidal flats in Yueqing Bay were discussed. By comparing with other bays on China's coast, it was observed that Yueqing Bay is a region with high benthic microalgae standing crop and primary production, which may be related to the type of its sediment.展开更多
In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of ...In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of tidal flats and the peat flats are developed in a specific evolution stage of mangrove tidal flats; the mangrove peats are the products of a specific evolution stage of the mangrove tidal flats.展开更多
Among many ecological services provided by mangrove ecosystems,soil organic carbon(SOC)storages have recently received much attention owing to the increasing atmospheric partial pressure of dissolved CO_(2)(pCO_(2)).B...Among many ecological services provided by mangrove ecosystems,soil organic carbon(SOC)storages have recently received much attention owing to the increasing atmospheric partial pressure of dissolved CO_(2)(pCO_(2)).Bacteria are fundamental to ecosystem functions and strongly influence the coupling of coastal carbon,nitrogen,and sulfur cycling in soils.The SOC storage and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary were explored using the 16S rDNA sequencing technique.The results showed the SOC storage in the 100 cm soil profile was 103.31±5.87 kg C m^(−2)and 93.10±11.28 kg C m^(−2)for mangroves with afforestation ages of 36 and 60 years,respectively.The total nitrogen(TN)and total sulfur(TS)contents exhibited significant correlations with the SOC in the mangrove soils,but only TN and SOC showed significant correlation in tidal flat soils.Although the tidal flats and mangroves occupied the contiguous intertidal zone within several kilometers,the variations in the SOC storage along the restored mangrove soil chronosequence were notably higher.The Functional Annotation of Prokaryotic Taxa(FAPROTAX)database was used to annotate the metabolic functions of the bacteria in the soils.The annotation revealed that only four metabolic functions were enriched with a higher relative abundance of the corresponding bacteria,and these enriched functions were largely associated with sulfate reduction.In addition,the specifically critical bacterial taxa that were associated with the SOC accumulation and nutrient cycling,shaped the distinct metabolic functions,and consequently facilitated the SOC accumulation in the mangrove soils with various afforestation ages.The general homogenization of the microbial community and composition along the intertidal soil chronosequence was primarily driven by the reciprocating tidal flows and geographical contiguity.展开更多
Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and use...Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
Significant progress has been achieved in the research of tide-dominated environments in the past two decades. These studies highlight both the importance and diversity of tidal flats in modern coastal environments. B...Significant progress has been achieved in the research of tide-dominated environments in the past two decades. These studies highlight both the importance and diversity of tidal flats in modern coastal environments. Based on their developing settings, tidal flats are subdivided into nine types, which are in turn grouped into sheltered or exposed spectrums according to the magnitude of exposure to waves. The ternary coastal classification model is revised with an embedded triangle to highlight non-open coast tidal flats as major second-order morphological elements to the first-order coastal environments including deltas, estuaries and lagoons. A new continuous spectrum of open coast depositional settings is proposed from muddy tidal flats of tide dominance with wave influence, through sandy tidal flats of mixed energy (tide-dominated), and tidal beaches of mixed energy (wave-dominated), to beaches of wave-dominance with tide influence. It is worth noting that no open coast setting is absolutely exempt from wave or tide influence. Three diagnostic criteria for the intertidal-flat deposits are proposed. Upon an upward-fining succession, (1) regular changes vertically from flaser bed-ding, through wavy bedding and to lenticular bedding are diagnostic of most of intertidal flats; (2) cyclical tidal rhythmites point to sheltered intertidal flats typically at the inner part of macrot-idal estuaries; (3) rhythmic alternations of storm and tidal deposition are diagnostic of exposed intertidal flats, especially the open coast types. Intertidal-flat deposits are generally topped by saltmarsh deposits, but underlain by different subtidal successions, like thick subtidal channel-fills, sand-bar complexes (sheltered coastal settings), and upwards coarsening successions of subtidal flats or thick subtidal sand ridge/bar complexes (exposed coastal environments).展开更多
Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and...Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and May 2007. The samples were analyzed with a particle sizer, resulting in the sediment distribution. The grain sizes and related parameters were analyzed. The results were presented in a ternary diagram. The sediment mainly consisted of sand, silty sand, sandy silt, sand-silt-clay, silt and clayey silt. And sand skeletons and clay matrices were found. At Nanhui Shoal, silt skeletons could be identified as well. Furthermore, the results were discussed per shoal. Although some depth dependencies were found per shoal, no general relation was found. The results are as follows: sediment located at these tidal flats of the Yangtze Estuary was mainly composed of sand, silty sand and silt. The median grain size in sediment was relatively complex with a range from 2.5 φ to 8 φ. The distributions of sorting coefficients ranging from 1 to 2 were in agreement with median sizes. It was suggested that sediment of the tidal flats was coarser and better sorted or finer and worse sorted. The skewness in sediment distribution varied from 0.1 to 0.8. In addition, the distributions of sorting coefficient and skewness in sediment at Chongming Eastern Shoal, Hengsha Eastern Shoal and Jiuduan Shoal were of similar characteristics because there were closely positive correlated relationships among these parameters. However, due to the location difference between Nanhui Southern Shoal and Eastern Shoal, the values of sorting coefficient and skewness had relatively large distinctions. The tracks of sediment transport could be described based on the distributions of sediment, which might reveal sediment transport controlled by two dominant hydrodynamic factors of current and wave. It was appreciable that coarser sediment with lower sorted coefficient was affected by dominant ebb current action and intense wave action resulted from rapidly dissipated wave energy. Moreover, due to the effects of obstructed branches, guided current and broken wave actions of the Deep Water Channel Project, grain-size in sediment located at two sides of the groyne was of uneven distribution characteristics.展开更多
Previous studies have found differences between communities of benthic macroinvertebrates living in constructed tidal flats compared with natural ones.We analyzed the distributional characteristics of benthic macroi...Previous studies have found differences between communities of benthic macroinvertebrates living in constructed tidal flats compared with natural ones.We analyzed the distributional characteristics of benthic macroinvertebrates in a blowing sand reclamation area(Area A),a dike-building silting area(Area B),an out-ofsiltation area(Area C),and a natural tidal flat(Area D)in order to characterize the community structure and diversity of benthic macroinvertebrates in a human-disturbed estuarine tidal-flat wetland.A total of 32 benthic macroinvertebrate species were identified(Area A=7;Area B=12;Area C=10;Area D=27).The diversity index was variable where:Area B<Area C<Area A<Area D.A higher average annual abundance of benthic macroinvertebrates was found at Area B(840.43±569.23)ind/m^(2) than in Area D(203.00±5.85)ind/m^(2),Area A(42.87±10.21)ind/m^(2),and Area C(17.64±1.50)ind/m^(2).The biomass in Area C(3.18±0.39)g/m^(2) was lower than in the other areas.One-Way ANOVAs detected significant differences(P<0.05)in the abundance and biomass within Area B among seasons;however,there were no significant seasonal differences(P>0.05)in the abundance and biomass of Areas A,C,and D.An abundance/biomass curve showed that the habitat in Areas A,B,and C could be categorized as moderately disturbed,whereas Area D was categorized as undisturbed.The results of cluster analysis suggested distinct assemblages in the four sampling areas.Reclamation raised the altitude of tidal flats,weakening the tidal power and changing the physical and chemical parameters of the water,leading to a change in the community structure of benthic macroinvertebrates.展开更多
To identify the distribution pattern of macrofaunal assemblages of the Dafeng intertidal flats in response to hydrodynamic and sediment dynamic processes in the northern Jiangsu coast,East China,macrofauna sampling an...To identify the distribution pattern of macrofaunal assemblages of the Dafeng intertidal flats in response to hydrodynamic and sediment dynamic processes in the northern Jiangsu coast,East China,macrofauna sampling and hydrodynamic observations were carried out simultaneously across the mud flat,mixed mud-sand flat,and silt-sand flat of the intertidal zone in June 2018.Results show that there was a clear zonal distribution pattern of the macrofaunal communities,as is controlled by local hydrological and sedimentary environments.Principal component analysis(PCA)revealed three types of intertidal area in terms of hydrological and surficial sediment parameters.Similarly,three distinct groups of the macrofaunal communities,i.e.,mud flat,mix mud-sand,and silt-sand groups,were recognized at similarity level of 24%based on the CLUSTER analysis in similarity profile(SIMPROF)test.Correlation analysis upon best variables stepwise search(BVSTEP)indicated the importance of the hydrodynamics(e.g.,water temperature and salinity,tidal duration,flow speed,suspended sediment concentration,and wave height)in the differentiation of macrofaunal communities with different taxonomic classes over the intertidal zone.Therefore,macrofaunal assemblages,similar to hydrology and surficial sediment,have a unique zonation pattern.Small-sized deposit feeders adapt better to low energy environments,thus dominated the upper part of the intertidal flat,whilst the heavy and large-sized filter feeders and deposit feeders were dominant over the middle and lower parts.The hydrodynamic and sediment processes cause biota-niche separation,which affected the biological processes across the intertidal flat.展开更多
Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of ma...Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of mangrove forests due to anthropogenic activities.It is an urgent need to explore an effective way for mangrove restoration.Here,three rows of bamboo fences with hydro-sedimentary observation set over Aegiceras corniculatum mangrove tidal flat of the Nanliu Delta,the largest delta of Beibu Gulf,China,were conducted to analyze the hydro-sedimentary variations induced by bamboo fences.Results identified that the mean horizontal velocity Um per burst(20 min)decreased by as much as 71%and 40%in comparison with those without bamboo fences in March and November,respectively,when the tidal current entering the bamboo area during flood.The maximum of mean horizontal flow velocity Um-max at bamboo area was 50%–75%of that without bamboo fences during ebb tide.The suspended sediment concentration of bamboo area suggested a maximum reduction of 57%relative to bare flat during flood,and was 80%lower than bare flat at ebb peak.Moreover,the turbulent kinetic dissipationεat flood tide was significantly higher than that at ebb tide,while the bamboo fences greatly increased the turbulent kinetic dissipationεby 2 to 5 times relative to bare flat,resulting in an increase of the bed elevation by inhibiting the sediment incipient motion and intercepting suspended sediment.The siltation rate at the bamboo area was 140%and 29.3%higher than that at the bare flat and the region covered with A.corniculatum,respectively.These results highlight that bamboo fences can effectively attenuate tidal current and thus promote siltation over mangrove flat,which contribute great benefit to mangrove survival.展开更多
Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined proces...Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined processes operating over a variety of spatial and temporal scales.As a traditional research highlight,the role of regular hydrodynamic processes such as tides,waves,and river flows have been explored comprehensively with fruitful outcomes.Over past decades,the changing environment(e.g.,sea level rise,increasing anthropogenic activities,and extreme weather conditions)has attracted more attention with many reported insightful results.More recent advances indicate that biological activities play a critical role in tidal flat-marsh morphodynamics but are still poorly understood.The field of research that connects the bio-logical and physical processes is commonly described as"biogeomorphology"and requires the joint efforts by scientists from multiple dis-ciplines ranging from hydraulics,ecology,and geography to sociology.This review aims to provide a synthesis of the current research status of tidal flat-marsh morphodynamics,with a particular emphasis on the understanding of various processes and feedbacks underlying the devel-opment of morphodynamic models.Some future research needs and challenges are identified to facilitate a more sustainable management strategy for tidal flats and saltmarshes under climate change.展开更多
基金supported by the Royal Netherlands Academy of Arts and Sciences(KNAW)(Grant No.PSA-SA-E-02)the Province of Zeeland,the Netherlands(Grant No.CoE-Buitendijks)。
文摘Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this study,we proposed an alternative empirical approach to explore tidal flat dynamics using statistical indices based on long-term time series of daily surface elevation development.Surface elevation dynamic(SED)indices focus on the magnitude and period of surface elevation changes,while morphodynamic signature(MDS)indices relate sediment dynamics to environmental drivers.The statistical analyses were applied to an intervention site in the Netherlands to determine the effect of recently constructed groynes on the tidal flat.Using these analyses,we were able to(1)detect a reduction in the daily SED and(2)determine that the changes in the daily SED were predominantly caused by the reduction in wave impact between the groynes rather than the reduction in tidal currents.Overall,the presented results showed that the combination of novel statistical indices provides new insights into the trajectories of tidal flats,ecosystem functioning,and sensitivity to physical drivers(wind and tides).Finally,we suggested how the SED and MDS indices may help to explore the future trajectories and climate resilience of intertidal habitats.
文摘Artificial/seminatural environments,such as aquacultural ponds,saltpans,and croplands,have recently been acknowledged as important habitats for coastal waterbirds.Although coastal waterbirds tend to use artificial habitats around tidal flats as roosting sites during high-tide,it remains unclear whether the importance of surrounding habitats relative to tidal flats varies among landscape types,seasons,species,or tidal conditions.The Black-faced Spoonbill(Platalea minor)and Eurasian Spoonbill(P.leucorodia)are two closely related sympatric species in East Asia with narrow and wide distribution ranges and habitat requirements,respectively.We therefore expect that both species will use surrounding artificial habitats across seasons at high tides,but Blackfaced Spoonbills will use them less frequently than Eurasian Spoonbills.Here,we address these hypotheses in the Imazu tidal flat and its surrounding environments in southern Japan.We investigated the habitat use and behavioral patterns of both species through route and behavioral surveys during the fall migration and wintering seasons in 2021.We found that both species used surrounding habitats including artificial ones more frequently than the tidal flat regardless of the tidal condition or season,but spoonbills used these habitats more frequently in winter than in autumn.We also found that Eurasian Spoonbills foraged in surrounding artificial habitats more frequently than Black-faced Spoonbills.These results not only demonstrate how coastal waterbirds exploit surrounding habitats relative to tidal flats but also suggest that the importance of surrounding habitats varies among species and seasons.Our study thus emphasizes that valuing and managing surrounding habitats in addition to tidal flats are key to conserving globally declining waterbirds.
基金National Basic Research Program of China, No.2002CB412401 Scientific Research Foundation of Graduate School of Nanjing University National Natural Science Foundation of China, No.40776023
文摘Seven cores were collected from different sediment zones of tidal flats at Xin- yanggang in north Jiangsu province in August 2007. Sediment grain-size distribution and radioisotopes of ^137Cs and ^210Ppb analysis were carried out for these cores. Sediment rates of the cores and radioisotopes distribution in surface sediment in different zones of the tidal flat were calculated from the ^137Cs and ^210Ppb activities in sediments cores. The results indicated that each tidal zone had experienced different evolution phases, hydrological dynamics in the tidal flats made the grain-size of the surface sediment change gradually. ^137Cs and ^210Ppb activities on the superficial layer of the cores varied spatially and the reason was discussed. On tidal flats, the fluctuation of ^137Cs and ^210Ppb activities in the cores reflected the special sedimentary characteristics. Vegetation affects the grain-size distribution and the vertical profiles of ^137Cs and ^210Ppb in the upper depths. ^137Cs and ^210Ppb chronology got the comparable average sediment rates on the tidal flat. The characteristics of ^137Cs and ^210Ppb in the cores reflected various depositional dynamical environments in different tidal zones and gave information on the different evolvement phases of the tidal zones. Based on the information of grain-size distribution, texture of the cores, sediment rates and topography, the evolution lines of the tidal flat were reconstructed.
基金National Natural Science Foundation of China No.40176021 No.50339050
文摘Integrating remote sensing, geographic information system (GIS) and fractal theory, change characteristics of tidal flats and tidal creeks in the Huanghe (Yellow) River Delta over the period of 1986-2001 were discussed. The results show that evolutions of tidal flats throughout the Huanghe River Delta are influenced by various factors, and that progressive succession and regression of tidal flats concur in different coastal segments of the delta. Human activities have played an increasingly important role in the succession process of tidal flats. Due to land reclamation in coastal zones of the delta in the last 15 years, lots of tidal flats were occupied, the artificial coastline migrated seaward (the maximum change rate was 0.8 kmyr-1) and tidal creeks became sparser (the highest decreasing rate of length of tidal creeks was 14.9 kmyr-1). Except for two coastal segments from the Tiaohe Estuary to the 106 Station and from the south of the Huanghe River mouth to the north of the Xiaodao River Estuary, fractal dimension values of tidal creeks in the remaining coastal segments of the delta decreased. In addition, the time dimension, sediment fluxes into the sea, waves and tidal-currents have profound influences on the evolution process of tidal flats. Four types of tidal flats-river-dominated tidal flats, tide-dominated tidal flats, wave-dominated tidal flats and man-dominated tidal flats can be identified. Owing to the intensification of human activities in coastal zones of the delta, man-dominated tidal flats have become the main kind of tidal flats.
基金Supported by the Natural Science Foundation of Zhejiang Province,China(No.LY20D040001)the National Undergraduate Innovation and Entrepreneurship Training Program of China。
文摘The growth of tidal flats off Zhejiang coasts in southwestern China has provided substantial areas for local agriculture and construction activities.To evaluate modern and future development of tidal flats in the region,a good understanding of sediment sources is necessary.Previous research has concluded that the Changjiang(Yangtze)River is the dominant supplier of sediments to this part of the southeast Chinese coast,despite the fact that sediment delivery from this source has been decreased markedly in the past two decades.In this study,we investigated the sources of tidal flat sediments,and the magnetic and geochemical properties of recent tidal flat sediments along the Zhejiang coast were compared with those discharged from rivers.Magnetic and geochemical properties of the tidal flat samples reveal statistically distinct sediment provenance groups.The magnetic and geochemical scatter plots show that the suspended sediment samples are naturally divided into two different groups,one including the Changjiang River and Qiantang River material,and the other including the Jiaojiang,Oujiang,and Feiyun Rivers that located in the central and southern parts of the study areas.At last,a binary source of tidal flat sediments along the Zhejiang coast was determined,with the substantial majority originating from local rivers,while a much smaller proportion emanates from the Changjiang River to the north.We conclude that the sediment contribution of the Changjiang River to tidal flat development in the region has been markedly overestimated,with important implications for management.
基金This study was supported by EC Project under contract No.ERB3514PL97 2439 with the contract No.ERB IC18-CT98-0291.
文摘The standing crop and primary production of benthic microalgae on tidal flats have seasonally been observed in the Sanggou and Jiaozhou Bays of the northern China coast during 1999 - 2000. The results show that the annual primary productions of benthic microalgae on tidal flats in the two bays are 2 532 and 7 542 tons carbon, which would be able to support 3.1 x 103 and 9.2 x 103 tons shellfish meat, respectively. The nature of sediment is essential for governing the biomass and primary production of benthic microalgae on tidal flats. The biomass and primary production of benthic microalgae on tidal flats with muddy sediments are higher than those with sandy sediments, which resulted from higher nutrient concentration and lower grazing pressure. That is the reason why in comparison with Xiangshan Bay the standing crop and production of benthic microalgae on tidal flats of the Sanggou and Jiaozhou Bays are low. Light was a key factor controlling vertical distribution of biomass and production of benthic microalgae on tidal flats of the two bays, resulted in appearance of maximum chlorophyll a and primary production at the surface layer and sharply decreased with depth of sediment.
文摘More than 904.2 km2 of the flats are above the theorotical datum level with progressive rate of 20-200 m/a to the sea in Shanghai. Since the reclaimed land is vital important to the city, multiple approaches to accelerating siltation are proposed in the paper according to detailed study of dynamics, sedimentary structure and landform evolution based on plentiful in situ data. It is of great significance to utilize tidal flats and reclamation of land in Shanghai.
基金supported by the 908 Special Coastal Surveys of Shandong Province Project (No. SD908-01-03)the Ocean Public Welfare Scientific Research Project (No. 201005029)
文摘Twenty-nine samples of surface sediments from tidal flats in the Northern Shandong Province were collected for grain size, heavy metal(Hg, Cu, Pb, Zn, Cd, and Cr), and oil pollution analyses. The geoaccumulation index(Igeo) and factor analysis were introduced to evaluate sediment quality and source of contaminants. The mean concentrations of Hg, Cu, Pb, Zn, Cd, Cr, and oil in the surface sediments in the study area are 0.033, 17.756, 19.121, 55.700, 0.291, 59.563, and 14.213 μg g-1, respectively. The heavy metal contamination in the old delta lobe is slightly higher than that in the abandoned delta lobe; however, the opposite was observed for oil pollution. The Igeo results revealed that the overall quality of the surface sediments in the study area is in good condition. The heavy metal pollution levels show a descending order: Cd> Hg> Cr> Cu> Zn> Pb, Cd being the main pollutant. The contamination level for in the study area is relatively lower than those for China's other tidal flats. Heavy metals are mainly derived from natural sources of rock weathering and erosion, partly influenced by industrial and agricultural discharge. However, oil pollution is mainly from runoff input, motorized fishing boat sewage, and oil exploitation.
基金National Natural Science Foundation of China and National Excellent Youth Foundation of China.(Grant No.49606069)
文摘Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.
基金supported by the National Marine Public-interest Project (No. 200705024)the National ‘908’ Project (No. 908-02-04-07)+1 种基金National ‘973’ Project (No. 2006CB400605)Zhejiang Province Marine Development Management Project (No. ZJ0201)
文摘The standing stock and primary production of benthic microalgae on tidal flats were measured seasonally at 3 transects (Puqing, Dahengchuang and Puqi) in Yueqing Bay during 2002 2003. The results showed that the integral chlorophyll a (Chl a) concentration in tidal flat mud exhibited a seasonal variation with the order of magnitude: winter (14.0 4.2 mg m-2) > spring (13.0 6.3 mg m-2) > autumn (7.7 5.9 mg m-2) > summer (4.6 3.2 mg m-2). The primary production showed an order of magnitude: spring (270.5 224.9 mgC m-2 d-1)>winter (238.7 225.5 mgC m-2 d-1)>autumn (214.1 56.2 mgC m-2 d-1)>summer (71.6 44.6 mgC m-2 d-1). Both chlorophyll a and primary production showed maximum values in the surface layer of sediment, and decreased rapidly with increasing depth due to sun light limitation. The results of variance analysis indicated that seasonal variation and tidal flat condition affected Chl a greatly, but had no significant effect on primary production. The annual primary production of benthic microalgae on tidal flats in Yueqing Bay was estimated at 16143 tons carbon, which is sufficient to support 1.02×105 tons shellfish production. The environmental factors affecting chlorophyll and primary production on the tidal flats in Yueqing Bay were discussed. By comparing with other bays on China's coast, it was observed that Yueqing Bay is a region with high benthic microalgae standing crop and primary production, which may be related to the type of its sediment.
文摘In this paper, the environment characteristics, micro-environment division and evolution of the mangrove tidal flats, peats and their genetic markers are discussed. It proves that the mangrove tidal flat is a kind of tidal flats and the peat flats are developed in a specific evolution stage of mangrove tidal flats; the mangrove peats are the products of a specific evolution stage of the mangrove tidal flats.
基金the National Natural Science Foundation of China(42230407)the National Key R&D Program of China(2016YFC0502900)the Scientific Research Project of Anhui Institute of Environmental Sciences(HKYKY2020-02).
文摘Among many ecological services provided by mangrove ecosystems,soil organic carbon(SOC)storages have recently received much attention owing to the increasing atmospheric partial pressure of dissolved CO_(2)(pCO_(2)).Bacteria are fundamental to ecosystem functions and strongly influence the coupling of coastal carbon,nitrogen,and sulfur cycling in soils.The SOC storage and bacterial communities along a restored mangrove soil chronosequence in the Jiulong River Estuary were explored using the 16S rDNA sequencing technique.The results showed the SOC storage in the 100 cm soil profile was 103.31±5.87 kg C m^(−2)and 93.10±11.28 kg C m^(−2)for mangroves with afforestation ages of 36 and 60 years,respectively.The total nitrogen(TN)and total sulfur(TS)contents exhibited significant correlations with the SOC in the mangrove soils,but only TN and SOC showed significant correlation in tidal flat soils.Although the tidal flats and mangroves occupied the contiguous intertidal zone within several kilometers,the variations in the SOC storage along the restored mangrove soil chronosequence were notably higher.The Functional Annotation of Prokaryotic Taxa(FAPROTAX)database was used to annotate the metabolic functions of the bacteria in the soils.The annotation revealed that only four metabolic functions were enriched with a higher relative abundance of the corresponding bacteria,and these enriched functions were largely associated with sulfate reduction.In addition,the specifically critical bacterial taxa that were associated with the SOC accumulation and nutrient cycling,shaped the distinct metabolic functions,and consequently facilitated the SOC accumulation in the mangrove soils with various afforestation ages.The general homogenization of the microbial community and composition along the intertidal soil chronosequence was primarily driven by the reciprocating tidal flows and geographical contiguity.
基金supported by the National Natural Science Foundation of China(Grant No.52271273)the Open Foundation of the Key Laboratory of Ministry of Education for Coastal Disaster and Protection(Grant No.Z202201)。
文摘Coastal wetlands are hotspots for nitrogen(N)cycling,and crab burrowing is known to transform N in intertidal marsh soils.However,the underlying mechanisms remain unclear.This study conducted field experiments and used indoor control test devices to investigate the seasonal response of nitrogen to crab disturbance at the sediment-water interface in coastal tidal flat wetlands.The results showed that crab disturbance exhibited significant seasonality with large seasonal differences in cave density and depth.Due to crab disturbance,nitrogen fuxes at the sediment-water interface were much greater in the box with crabs than in the box without crabs.In summer,NH-N showed a positive flux from the sediment to the overlying water,but NO2-N and NOg-N showed positive fluxes from the sediment to the overlying water only in early stages.In winter,NH-N showed a positive flux from the sediment to the overlying water,but NO-N and NO,-N both exhibited positive and negative fluxes.These results indicated that the presence of crab burrows can cause the aerobic layer to move downward by approximately 8-15 cm in summer and directly promote nitrification at the sediment surface.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.
基金funded by the National Natural Science Foundation of China (Grant No.41076016,41276045)Program for New Century Excellent Talents in University (Grant No.NCET-07-0619)+1 种基金State Key Laboratory of Marine Geology (MG200907)the Fundamental Research Funds for the Central University
文摘Significant progress has been achieved in the research of tide-dominated environments in the past two decades. These studies highlight both the importance and diversity of tidal flats in modern coastal environments. Based on their developing settings, tidal flats are subdivided into nine types, which are in turn grouped into sheltered or exposed spectrums according to the magnitude of exposure to waves. The ternary coastal classification model is revised with an embedded triangle to highlight non-open coast tidal flats as major second-order morphological elements to the first-order coastal environments including deltas, estuaries and lagoons. A new continuous spectrum of open coast depositional settings is proposed from muddy tidal flats of tide dominance with wave influence, through sandy tidal flats of mixed energy (tide-dominated), and tidal beaches of mixed energy (wave-dominated), to beaches of wave-dominance with tide influence. It is worth noting that no open coast setting is absolutely exempt from wave or tide influence. Three diagnostic criteria for the intertidal-flat deposits are proposed. Upon an upward-fining succession, (1) regular changes vertically from flaser bed-ding, through wavy bedding and to lenticular bedding are diagnostic of most of intertidal flats; (2) cyclical tidal rhythmites point to sheltered intertidal flats typically at the inner part of macrot-idal estuaries; (3) rhythmic alternations of storm and tidal deposition are diagnostic of exposed intertidal flats, especially the open coast types. Intertidal-flat deposits are generally topped by saltmarsh deposits, but underlain by different subtidal successions, like thick subtidal channel-fills, sand-bar complexes (sheltered coastal settings), and upwards coarsening successions of subtidal flats or thick subtidal sand ridge/bar complexes (exposed coastal environments).
基金Key Project for the National Natural Science Foundation of China No.50939003 National Natural Science Foundation of China No.40976055 No.41076050
文摘Sediment samples with high spatial resolution (432 samples in total) and flow data were collected on the tidal flats in the mouth-bar region of the Yangtze Estuary. The data was collected in July 2005, July 2006 and May 2007. The samples were analyzed with a particle sizer, resulting in the sediment distribution. The grain sizes and related parameters were analyzed. The results were presented in a ternary diagram. The sediment mainly consisted of sand, silty sand, sandy silt, sand-silt-clay, silt and clayey silt. And sand skeletons and clay matrices were found. At Nanhui Shoal, silt skeletons could be identified as well. Furthermore, the results were discussed per shoal. Although some depth dependencies were found per shoal, no general relation was found. The results are as follows: sediment located at these tidal flats of the Yangtze Estuary was mainly composed of sand, silty sand and silt. The median grain size in sediment was relatively complex with a range from 2.5 φ to 8 φ. The distributions of sorting coefficients ranging from 1 to 2 were in agreement with median sizes. It was suggested that sediment of the tidal flats was coarser and better sorted or finer and worse sorted. The skewness in sediment distribution varied from 0.1 to 0.8. In addition, the distributions of sorting coefficient and skewness in sediment at Chongming Eastern Shoal, Hengsha Eastern Shoal and Jiuduan Shoal were of similar characteristics because there were closely positive correlated relationships among these parameters. However, due to the location difference between Nanhui Southern Shoal and Eastern Shoal, the values of sorting coefficient and skewness had relatively large distinctions. The tracks of sediment transport could be described based on the distributions of sediment, which might reveal sediment transport controlled by two dominant hydrodynamic factors of current and wave. It was appreciable that coarser sediment with lower sorted coefficient was affected by dominant ebb current action and intense wave action resulted from rapidly dissipated wave energy. Moreover, due to the effects of obstructed branches, guided current and broken wave actions of the Deep Water Channel Project, grain-size in sediment located at two sides of the groyne was of uneven distribution characteristics.
基金This work was supported by the“Natural Science Fund”of Shanghai(15ZR1420900),Shanghai Chinathe Public Science and Technology Research Fund of Ocean(201305027-3),Shanghai,Chinathe Fishery Resources Restoration Project of Siltation Zone Outside of Pudong Airport,Shanghai,China.
文摘Previous studies have found differences between communities of benthic macroinvertebrates living in constructed tidal flats compared with natural ones.We analyzed the distributional characteristics of benthic macroinvertebrates in a blowing sand reclamation area(Area A),a dike-building silting area(Area B),an out-ofsiltation area(Area C),and a natural tidal flat(Area D)in order to characterize the community structure and diversity of benthic macroinvertebrates in a human-disturbed estuarine tidal-flat wetland.A total of 32 benthic macroinvertebrate species were identified(Area A=7;Area B=12;Area C=10;Area D=27).The diversity index was variable where:Area B<Area C<Area A<Area D.A higher average annual abundance of benthic macroinvertebrates was found at Area B(840.43±569.23)ind/m^(2) than in Area D(203.00±5.85)ind/m^(2),Area A(42.87±10.21)ind/m^(2),and Area C(17.64±1.50)ind/m^(2).The biomass in Area C(3.18±0.39)g/m^(2) was lower than in the other areas.One-Way ANOVAs detected significant differences(P<0.05)in the abundance and biomass within Area B among seasons;however,there were no significant seasonal differences(P>0.05)in the abundance and biomass of Areas A,C,and D.An abundance/biomass curve showed that the habitat in Areas A,B,and C could be categorized as moderately disturbed,whereas Area D was categorized as undisturbed.The results of cluster analysis suggested distinct assemblages in the four sampling areas.Reclamation raised the altitude of tidal flats,weakening the tidal power and changing the physical and chemical parameters of the water,leading to a change in the community structure of benthic macroinvertebrates.
基金Supported by the National Natural Science Foundation of China(Nos.41576154,41625021)the National Key Basic Research Program of China(No.2013CB956500)。
文摘To identify the distribution pattern of macrofaunal assemblages of the Dafeng intertidal flats in response to hydrodynamic and sediment dynamic processes in the northern Jiangsu coast,East China,macrofauna sampling and hydrodynamic observations were carried out simultaneously across the mud flat,mixed mud-sand flat,and silt-sand flat of the intertidal zone in June 2018.Results show that there was a clear zonal distribution pattern of the macrofaunal communities,as is controlled by local hydrological and sedimentary environments.Principal component analysis(PCA)revealed three types of intertidal area in terms of hydrological and surficial sediment parameters.Similarly,three distinct groups of the macrofaunal communities,i.e.,mud flat,mix mud-sand,and silt-sand groups,were recognized at similarity level of 24%based on the CLUSTER analysis in similarity profile(SIMPROF)test.Correlation analysis upon best variables stepwise search(BVSTEP)indicated the importance of the hydrodynamics(e.g.,water temperature and salinity,tidal duration,flow speed,suspended sediment concentration,and wave height)in the differentiation of macrofaunal communities with different taxonomic classes over the intertidal zone.Therefore,macrofaunal assemblages,similar to hydrology and surficial sediment,have a unique zonation pattern.Small-sized deposit feeders adapt better to low energy environments,thus dominated the upper part of the intertidal flat,whilst the heavy and large-sized filter feeders and deposit feeders were dominant over the middle and lower parts.The hydrodynamic and sediment processes cause biota-niche separation,which affected the biological processes across the intertidal flat.
基金The National Natural Science Key Foundation of China under contract No.41930537the Key Research and Development Plan of Guangxi under contract No.AB21076016+1 种基金the Marine Science Program for Guangxi First-Class Discipline,Beibu Gulf Universitythe China Postdoctoral Science Foundation under contract No.2022M721150.
文摘Mangrove forest is one of the most important ecological and environmental resources by effectively promoting tidal flat deposition and preventing the coastal region from typhoon.However,there have been mass loss of mangrove forests due to anthropogenic activities.It is an urgent need to explore an effective way for mangrove restoration.Here,three rows of bamboo fences with hydro-sedimentary observation set over Aegiceras corniculatum mangrove tidal flat of the Nanliu Delta,the largest delta of Beibu Gulf,China,were conducted to analyze the hydro-sedimentary variations induced by bamboo fences.Results identified that the mean horizontal velocity Um per burst(20 min)decreased by as much as 71%and 40%in comparison with those without bamboo fences in March and November,respectively,when the tidal current entering the bamboo area during flood.The maximum of mean horizontal flow velocity Um-max at bamboo area was 50%–75%of that without bamboo fences during ebb tide.The suspended sediment concentration of bamboo area suggested a maximum reduction of 57%relative to bare flat during flood,and was 80%lower than bare flat at ebb peak.Moreover,the turbulent kinetic dissipationεat flood tide was significantly higher than that at ebb tide,while the bamboo fences greatly increased the turbulent kinetic dissipationεby 2 to 5 times relative to bare flat,resulting in an increase of the bed elevation by inhibiting the sediment incipient motion and intercepting suspended sediment.The siltation rate at the bamboo area was 140%and 29.3%higher than that at the bare flat and the region covered with A.corniculatum,respectively.These results highlight that bamboo fences can effectively attenuate tidal current and thus promote siltation over mangrove flat,which contribute great benefit to mangrove survival.
基金supported by the National Natural Science Foundation of China(Grants No.41976156 and 51925905)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200077)+2 种基金the Nantong Science and Technology Bureau(Grant No.MS 12021083)the Marine Science and Technology Innovation Project of Jiangsu Province(Grant No.JSZRHYKJ202105)the Fundamental Research Funds for the Central Universities(Grant No.B210204022).
文摘Tidal flats and saltmarshes have been a long-standing research focus because of their high socio-economic and ecological values.The evolution of tidal flat-marsh systems is highly complex due to the intertwined processes operating over a variety of spatial and temporal scales.As a traditional research highlight,the role of regular hydrodynamic processes such as tides,waves,and river flows have been explored comprehensively with fruitful outcomes.Over past decades,the changing environment(e.g.,sea level rise,increasing anthropogenic activities,and extreme weather conditions)has attracted more attention with many reported insightful results.More recent advances indicate that biological activities play a critical role in tidal flat-marsh morphodynamics but are still poorly understood.The field of research that connects the bio-logical and physical processes is commonly described as"biogeomorphology"and requires the joint efforts by scientists from multiple dis-ciplines ranging from hydraulics,ecology,and geography to sociology.This review aims to provide a synthesis of the current research status of tidal flat-marsh morphodynamics,with a particular emphasis on the understanding of various processes and feedbacks underlying the devel-opment of morphodynamic models.Some future research needs and challenges are identified to facilitate a more sustainable management strategy for tidal flats and saltmarshes under climate change.