In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship be...The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship between mixing time and circulation flow were dis- cussed. The effects of the lift gas flow rate and submersion depth on the degassing rate in one circulation period were studied by water modeling. The results show that the circulation period is shortened by increasing the lift gas flow rate. The circulation period is the shortest when the submersion depth of snorkels is 560 mm. The whole ladle can be mixed thoroughly after three times of circulation. Increasing the lift gas flow rate can enhance the degassing rate of RH circulation.展开更多
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu...The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal pa...Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D , compared with the oil film thickness to roughness ratio h/R q . As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.展开更多
Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5?N and 11?N...Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5?N and 11?N, part of which turns to the south as the Somali current near the coast at about 10?N and the rest turns north. At the passage between the African continent and the So- cotra Island, the northern branch separates into two flows: the left one enters the passage and the right one flows eastward along the southern slope of the island. Off the island the flow separates once more, most of it meandering northeast and a small fraction flow- ing southeast. Volume transport calculation suggests that the tidal transport is one or two orders of magnitude smaller than the total transport in this region and it becomes more important near the coast. The average velocity of the flow in the upper layer (0-150 m) is about 20 cm s-1, with a maximum of 53 cm s-1 appearing east of the Socotra Island, and the subsurface layer (200-800 m) has an aver- age velocity of 8.6 cm s-1; the velocity becomes smaller at greater depths. The depth of the seasonal thermocline is about 100 m, above which there is a layer with well mixed temperature and dissolved oxygen. High-salinity and oxygen-rich water appears near the surface of the northern Arabian Sea; a salinity maximum and oxygen minimum at 100 m depth along 8?N testifies the subduction of surface water from the northern Arabian Sea. Waters from the Red Sea and the Persian Gulf also influence the salinity of the area.展开更多
Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidi...Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidity and flexibility of the blades were adjusted by intermittent gas injection,which increased the effectiveness of mixing of the liquid-liquid two-phase fluid.This study investigates the influence of different process parameters on the mixing efficiency and quantifies the chaotic characteristics of fluid mixing through pressure-time series analysis of multiscale entropy and the 0–1 test.A high-speed camera recorded the bubble movement in the flow field,while particle image velocimetry(PIV)revealed the enhancement of the properties of the flow field in the system due to the suspended motion of the particles.Using suitable process parameters,gas-rigid-flexible composite blade coupling significantly enhanced the mixing effect,where the mixing time of the G-RFCP system was reduced by 1.42 times compared to that of the CP system.Bubble motion,deformation,and rupture enhanced the mechanical agitation,increasing the intensity of the turbulence and chaotic behaviour.Flow-field analysis indicated a three-fold increase in the vorticity and a 1.04-fold increase in the velocity difference for the G-RFCP system compared with those of the CP system.This study provides theoretical and experimental foundations for understanding chaotic mixing in liquid-liquid two-phase fluids.展开更多
为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速...为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。展开更多
氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究...氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。展开更多
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.
基金supported by the National Key Technology R & D Program of China (No.2006BAE03A06)
文摘The circulation period of RH vacuum refining was studied to promote the refining efficiency. The influences of the lift gas flow rate and submersion depth of snorkels on the circulation period, and the relationship between mixing time and circulation flow were dis- cussed. The effects of the lift gas flow rate and submersion depth on the degassing rate in one circulation period were studied by water modeling. The results show that the circulation period is shortened by increasing the lift gas flow rate. The circulation period is the shortest when the submersion depth of snorkels is 560 mm. The whole ladle can be mixed thoroughly after three times of circulation. Increasing the lift gas flow rate can enhance the degassing rate of RH circulation.
基金The project is supported by The National Natural Science Foundation of China
文摘The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
基金ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina (No .5 9990 472 )
文摘Fractal characteristics are introduced into solving lubrication problems. Based on the analysis of the relationship between roughness and engineering surfaces' fractal characteristics and by introducing fractal parameters into the mixed lubrication equation, the relationship between flow factors and fractal dimensions is analyzed. The results show that the pressure flow factors' values increase, while the shear flow factor decreases, with the increasing length to width ratio of a representative asperity γ at the same fractal dimension. It can be also found that these factors experience more irregular and significant variations and show the higher resolution and the local optimal and the worst fractal dimensions, by a fractal dimension D , compared with the oil film thickness to roughness ratio h/R q . As an example of application of the model to solve the lubrication of the piston skirt in an engine, the frictional force and the load capacity of the oil film in a cylinder were analyzed. The results reveal that the oil film frictional force and the load capacity fluctuate with increasing fractal dimension, showing big values at the small D and smaller ones and slightly variable in the range of bigger one, at the same crank angle.
基金supported by NSFC project of Nos.40376005,40506006,40676015,NCET-04-0646 and SRFDP project of No.20060423014The NCEP reanalysis wind data are provided by the NOA A/OAR/ESRL PSD,Boulder,Colorado,USA,from their Web site(http://www.cdc.noaa.gov/).The gnidded monthly mean anomaly of sea level height data of TOPEX/Poscidon are provided by The Center for Space Research/The Univer sity ofTexas at Austin
文摘Based on a ship survey during January 1998, the characteristics of the flow, the thermohaline properties and the volume transport of the Arabian Sea are discussed. A strong westward flow exists between 10.5?N and 11?N, part of which turns to the south as the Somali current near the coast at about 10?N and the rest turns north. At the passage between the African continent and the So- cotra Island, the northern branch separates into two flows: the left one enters the passage and the right one flows eastward along the southern slope of the island. Off the island the flow separates once more, most of it meandering northeast and a small fraction flow- ing southeast. Volume transport calculation suggests that the tidal transport is one or two orders of magnitude smaller than the total transport in this region and it becomes more important near the coast. The average velocity of the flow in the upper layer (0-150 m) is about 20 cm s-1, with a maximum of 53 cm s-1 appearing east of the Socotra Island, and the subsurface layer (200-800 m) has an aver- age velocity of 8.6 cm s-1; the velocity becomes smaller at greater depths. The depth of the seasonal thermocline is about 100 m, above which there is a layer with well mixed temperature and dissolved oxygen. High-salinity and oxygen-rich water appears near the surface of the northern Arabian Sea; a salinity maximum and oxygen minimum at 100 m depth along 8?N testifies the subduction of surface water from the northern Arabian Sea. Waters from the Red Sea and the Persian Gulf also influence the salinity of the area.
基金supports by the National Natural Science Foundation of China(project No.52166004)National key research and development plan project(project No.2022YFC3902000)Yunnan Major Scientific and Technological Projects(grant Nos.202202AG050007,202202AG050002).
文摘Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidity and flexibility of the blades were adjusted by intermittent gas injection,which increased the effectiveness of mixing of the liquid-liquid two-phase fluid.This study investigates the influence of different process parameters on the mixing efficiency and quantifies the chaotic characteristics of fluid mixing through pressure-time series analysis of multiscale entropy and the 0–1 test.A high-speed camera recorded the bubble movement in the flow field,while particle image velocimetry(PIV)revealed the enhancement of the properties of the flow field in the system due to the suspended motion of the particles.Using suitable process parameters,gas-rigid-flexible composite blade coupling significantly enhanced the mixing effect,where the mixing time of the G-RFCP system was reduced by 1.42 times compared to that of the CP system.Bubble motion,deformation,and rupture enhanced the mechanical agitation,increasing the intensity of the turbulence and chaotic behaviour.Flow-field analysis indicated a three-fold increase in the vorticity and a 1.04-fold increase in the velocity difference for the G-RFCP system compared with those of the CP system.This study provides theoretical and experimental foundations for understanding chaotic mixing in liquid-liquid two-phase fluids.
文摘为研究混凝土运输车搅拌筒内的混凝土与骨料颗粒的真实运动情况,采用CFD-DEM耦合的方法,考虑混凝土的非牛顿流体特性及骨料颗粒间的相互作用,对混凝土进料、搅拌、出料过程的混凝土及颗粒运动规律进行数值模拟。通过将出料时间和出料速率数值仿真结果与实验对比,验证了CFD-DEM耦合方法的可行性。将计算流体动力学(Computational Fluid Dynamics,CFD)和离散元(Discrete Element Method,DEM)仿真结果导入ABAQUS中对叶片结构强度进行了分析,结果表明:叶片所受应力远小于材料的许用应力,最大节点位移满足刚度设计要求。最后对叶片的磨损情况进行了分析。
文摘氢和氨作为清洁能源受到广泛关注,为深入探究氢-氨混燃的燃烧特性和影响因素,本文借助Chemkin仿真平台建立相关反应模型,以氢-氨混合气体为燃料,空气作为助燃剂,采用Otomo等人提出的一种氨氧化机理对其燃烧过程进行模拟计算,并模拟研究了混合气体的点火延迟时间、层流燃烧速度、绝热燃烧温度、NO排放等燃烧特性随当量比、初始压力以及燃料中H_(2)比例的具体变化规律,对不同工况下的层流火焰结构、H和OH自由基的产率(rate of production,ROP)、NO生成的敏感度进行了化学动力学分析。结果表明:纯氨气体的点火延迟时间长、层流燃烧速度慢,掺氢后燃烧特性均有所改善,且提高了火焰的绝热燃烧温度,但掺氢比例越大,NO排放越多。NO摩尔分数随当量比变化的趋势先增后减,在当量比为0.8左右达到峰值。综合考虑氢-氨混燃的一系列燃烧特性以及掺氢、加压的成本和收益情况,推荐H_(2)占比15%、当量比φ=1.1、压力P=0.2 MPa为氢-氨混合燃烧的最优条件。