The difference-ratio relations are introduced to separate tidal constituents that are aliaseddue to the sampling interval and sampling span of the TOPEX/POSEIDON altimeter. It is found that some tidal constituents suc...The difference-ratio relations are introduced to separate tidal constituents that are aliaseddue to the sampling interval and sampling span of the TOPEX/POSEIDON altimeter. It is found that some tidal constituents such as K_1 and SSA, though aliased at along track points, are not aliased at crossover points beeause the data at crossover points are double those at along track points. So the harmonic analysis method can be employed directly for the analysis of time series at crossover points. Then the difference-ratio relations from crossover points are introduced to analyze the time series at along track points. The TOPEX/POSEIDON data in the Northwest Pacific are analyzed with this method. The results from this method agree well with tidal constants from tidal gauges.展开更多
An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observ...An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.展开更多
基金his study was supported by the National Natural Science Foundation of China under contract No.40006001.
文摘The difference-ratio relations are introduced to separate tidal constituents that are aliaseddue to the sampling interval and sampling span of the TOPEX/POSEIDON altimeter. It is found that some tidal constituents such as K_1 and SSA, though aliased at along track points, are not aliased at crossover points beeause the data at crossover points are double those at along track points. So the harmonic analysis method can be employed directly for the analysis of time series at crossover points. Then the difference-ratio relations from crossover points are introduced to analyze the time series at along track points. The TOPEX/POSEIDON data in the Northwest Pacific are analyzed with this method. The results from this method agree well with tidal constants from tidal gauges.
基金Supported by the National Natural Science Foundation of China (No. 40671161) and the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China(No.1469990324233-03-04).
文摘An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.