In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the dens...In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.展开更多
In this paper, the j, υ corrected formulae of the amplitudes and the phases of 58 astronomical constituents are given, and the models for the analysis and prediction of 169 constituents are presented. The new Cartwri...In this paper, the j, υ corrected formulae of the amplitudes and the phases of 58 astronomical constituents are given, and the models for the analysis and prediction of 169 constituents are presented. The new Cartwright's calculated results of the tidal potential are used, and the quadratic analysis is made. It has been proved by a number of trials that the harmonic constants of constituents are more stable and the accuracy of the predicted result reliable.展开更多
In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "...In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.展开更多
文摘In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.
文摘In this paper, the j, υ corrected formulae of the amplitudes and the phases of 58 astronomical constituents are given, and the models for the analysis and prediction of 169 constituents are presented. The new Cartwright's calculated results of the tidal potential are used, and the quadratic analysis is made. It has been proved by a number of trials that the harmonic constants of constituents are more stable and the accuracy of the predicted result reliable.
基金This work was financially supported by the Science Council of Taiwan(Grant No.NSC90-2611-M-110-012)
文摘In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.