Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb...Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.展开更多
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas...Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design.展开更多
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress ...A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ...Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased.展开更多
The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geo...The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality.展开更多
Tight oil has become the focus in exploration and development of unconventional oil in the world, especially in North America and China. In North America, there has been intensive exploration for tight oil in marine. ...Tight oil has become the focus in exploration and development of unconventional oil in the world, especially in North America and China. In North America, there has been intensive exploration for tight oil in marine. In China, commercial exploration for tight oil in conti- nental sediments is now steadily underway. With the dis- covery of China's first tight oil field--Xin'anbian Oilfield in the Ordos Basin, tight oil has been integrated officially into the category for reserves evaluation. Geologically, tight oil is characterized by distribution in depressions and slopes of basins, extensive, mature, and high-quality source rocks, large-scale reservoir space with micro- and nanopore throat systems, source rocks and reservoirs in close contact and with continuous distribution, and local "sweet area." The evaluation of the distribution of tight oil "sweet area" should focus on relationships between "six features." These are source properties, lithology, physical properties, brittleness, hydrocarbon potential, and stress anisotropy. In North America, tight oil prospects are distributed in lamellar shale or marl, where natural fractures are fre- quently present, with TOC 〉 4 %, porosity 〉 7 %, brittle mineral content 〉 50 %, oil saturation of 50 %-80 %, API 〉 35~, and pressure coefficient 〉 1.30. In China, tight oil prospects are distributed in lamellar shale, tight sand- stone, or tight carbonate rocks, with TOC 〉 2 %, poros- ity 〉 8 %, brittle mineral content 〉 40 %, oil saturation of 60 %-90 %, low crude oil viscosity, or high formation pressure. Continental tight oil is pervasive in China and its preliminary estimated technically recoverable resources are about (20-25) × lO8^ t.展开更多
Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the develo...Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.展开更多
In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accu...In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accumulation and the tight oil charging process. However, kinetic models used for petroleum development are not applicable for petroleum exploration. In this study, a static resistance model[ is proposed after analyzing resistances in ultra-slow flow in porous media. Using this model, the disco^atinuous pattern of oil charging is reproduced through incompressible Navier-Stokes equations, the phase field method and the finite element method. This study also explains macroscopic percolation behavior with microscopic flow mechanisms and discusses some issues in ultra-slow flow in a micro/nano pore-throat network. The resistance analysis reveals that capillary resistance and dissipation resistance are dominant factors in the mechanism of oil accumulation in tight reservoirs. Numerical simulations show that pressure thresholds exist and result in discontinuous oil charging. Generally, it is proven that the static model is more applicable than kinetic models in describing oil accumulation in tight reservoirs.展开更多
Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system whi...Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.展开更多
Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery f...Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale.展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
Xin’anbian Oilfield of the Ordos Basin is the large tight oilfield to be first exploration discovery in china.The production of tight oil increased significantly in recent years.It shows great exploration potential o...Xin’anbian Oilfield of the Ordos Basin is the large tight oilfield to be first exploration discovery in china.The production of tight oil increased significantly in recent years.It shows great exploration potential of Chang 7 tight oil.But the physical property and hydrocarbon enrichment characteristics of Chang 7 tight oil reservoirs were rarely studied,The forming conditions of tight oil reservoirs are systematically summarized and analyzed through the study of hydrocarbon generation,sedimentary reservoirs and hydrocarbon migration and accumulation based on production and core experimental data.The result shows that,The porosity of the Chang 7_(2)reservoir mainly distributed in 5.0-11.0%,average at 7.9%,The permeability mainly distributed in 0.04-0.18×10^(-3)μm^(2),average at 0.12×10^(-3)μm^(2),The pore diameters of the tight oil reservoir distributed in 2-8μm.The high-quality Chang 7_(3)source rocks and the micropsammite of Chang 7_(2)subaqueous distributary channel were widely distributed in the study area.The lenticular or banded sand bodies are distributed among mudstone or hydrocarbon source rocks and have the advantage of migration distance for hydrocarbon accumulation.The reservoir space is composed of micro-nanometer pores and throat,that is formed in the process of increasing pressure during hydrocarbon generation and hydrocarbon accumulation.The Chang 7 tight oil was generated in the early Cretaceous and injected into the sand of the subaqueous distributary channel driven by continuous hydrocarbon generation supercharging.The formation and accumulation of tight oil reservoirs are mainly controlled by source rocks,sedimentary microfacies and reservoirs of good quality.展开更多
Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,mo...Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,modeling experiment and comprehensive analysis,this study reveals that the tight oil accumulates at start-up pressure,advances under differential pressure,diffuses at alternating fast and low speeds,charges in stepped large area and migrates rapidly through fractures,and enriches in dominant fractures and pores.The root cause of ladder-like charge is the multiple scales of pores.The widespread source rock with high hydrocarbon generation intensity is the material basis for tight oil enrichment;the dominant source reservoir assemblage is the basic unit for tight oil enrichment;fractures and beddings are conducive to local rapid migration of tight oil;fractures and pores work together to control the enrichment of tight oil.Two typical accumulation models of tight oil are established,namely"source reservoir in coexistence,four optimal factors controlling enrichment around central area,and large-scale continuous distribution"for a large freshwater lake clastic rock basin and"source reservoir integration,four optimal factors controlling enrichment,central area distribution,small in size but high in enrichment degree"for a small saline lake diamictite depression.展开更多
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,...The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).展开更多
This study aimed to investigate the complete distribution of reservoir space in tight oil sandstone combining casting slices, field emission scanning electron microscopy(FE-SEM), the pore-throat theory model, high-res...This study aimed to investigate the complete distribution of reservoir space in tight oil sandstone combining casting slices, field emission scanning electron microscopy(FE-SEM), the pore-throat theory model, high-resolution image processing, mathematical statistics, and other technical means. Results of reservoir samples from the Xin’anbian area of Ordos Basin showed that the total pore radius curve of the tight oil sandstone reservoir exhibited a multi-peak distribution, and the peaks appeared to be more focused on the ends of the range. This proved that pores with a radius of 1–50,000 nm provided the most significant storage space for tight oil, indicating that special attention should be paid to this range of the pore size distribution. Meanwhile, the complete throat radius curve of the tight oil sandstone reservoir exhibited a multipeak distribution. However, the peak values were distributed throughout the scales. This confirmed that the throat radius in the tight oil sandstone reservoir was not only in the range of hundreds of nanometers but was also widely distributed in the scale approximately equal to the pore size. The new rapid determination method could provide a precise theoretical basis for the comprehensive evaluation, exploration, and development of a tight oil sandstone reservoir.展开更多
Nitrogen huff-n-puff(N_(2)HnP) appears to be an economical and high-efficiency enhanced oil recovery(EOR) technique for tight oil reservoirs.There is however a lack of understanding of the pore-level EOR performance o...Nitrogen huff-n-puff(N_(2)HnP) appears to be an economical and high-efficiency enhanced oil recovery(EOR) technique for tight oil reservoirs.There is however a lack of understanding of the pore-level EOR performance of N2HnP under tight reservoir conditions.In this work,a non-magnetic reactor was created and combined with a nuclear magnetic resonance(NMR) device for real-time monitoring of oil distribution in the HnP experiment.N_(2)HnP experiments were then performed in a tight sandstone core sample at a temperature of 353 K and an injection pressure≥ 24 MPa.The pore-level oil distribution under reservoir conditions was monitored and the EOR performance of N2HnP in specific pores was analyzed.The pore throat structures of the core sample and the phase behavior of the N_(2)-Oil system were analyzed to elucidate the EOR mechanism of N_(2)HnP.An oil recovery factor of 37.52% can be achieved after four cycles,which proves the EOR potential of N_(2)HnP for tight reservoirs.The highest recoveries after N_(2)HnP are obtained in the large pores,followed by the medium pores,the small pores,and finally the micro pores.Increases in soaking time and injection pressure resulted in slight and pronounced increases in oil recovery,respectively,both of which are mainly reflected in the first cycle.Specifically,increasing the soaking time only slightly improves the cumulative oil recovery in the small pores while increasing the injection pressure significantly improves the cumulative oil recovery in the small,medium,and large pores simultaneously.However,variations in both injection pressure and soaking time have a negligible effect on the cumulative oil recovery of the micro pores.展开更多
CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and i...CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and influencing factors of CO_(2)huff and puff and the contribution of sweeping mode to recovery.The experimental results show that the development process of CO_(2)huff and puff can be divided into four stages,namely,CO_(2)backflow,production of gas with some oil,high-speed oil production,and oil production rate decline stages.The production of gas with some oil stage is dominated by free gas displacement,and the high-speed oil production stage is dominated by dissolved gas displacement.CO_(2)injection volume and development speed are the major factors affecting the oil recovery.The larger the injected CO_(2)volume and the lower the development speed,the higher the oil recovery will be.The reasonable CO_(2)injection volume and development speed should be worked out according to oilfield demand and economic evaluation.There is a reasonable soaking time in CO_(2)huff and puff.Longer soaking time than the optimum time makes little contribution to oil recovery.In field applications,the stability of bottom hole pressure is important to judge whether the soaking time is sufficient during the huff period.The oil recovery of CO_(2)huff and puff mainly comes from the contribution of flow sweep and diffusion sweep,and diffusion sweep contributes more to the oil recovery when the soaking time is sufficient.展开更多
Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclea...Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.展开更多
基金The authors sincerely appreciate the financial support from the National Natural Science Foundation of China(No.52074279,51874261).
文摘Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.
基金The authors gratefully acknowledge the financial supports from the National Science Foundation of China under Grant 52274027 as well as the High-end Foreign Experts Recruitment Plan of the Ministry of Science and Technology China under Grant G2022105027L.
文摘Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design.
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
基金Supported by the Joint Fund Project of the National Natural Science Foundation of China(U22B2075).
文摘A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金the China Research and Pilot Test on Key Technology of Efficient Production of Changqing Tight Oil(Grant No.2021DJ2202).
文摘Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased.
基金granted by the National Program on Key Basic Research Project(973 Program)(grant No. 2014CB239000)State Oil and Gas Major Project(grant No.2011ZX05001)+1 种基金CNPC Major Project(grant No. 2016B-0301-04)financially supported by the Ministry of Science and Technology of China
文摘The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality.
基金supported by the National Key Basic Research and Development Program (973 Program), China (Grant 2014CB239000)China National Science and Technology Major Project (Grant 2011ZX05001)
文摘Tight oil has become the focus in exploration and development of unconventional oil in the world, especially in North America and China. In North America, there has been intensive exploration for tight oil in marine. In China, commercial exploration for tight oil in conti- nental sediments is now steadily underway. With the dis- covery of China's first tight oil field--Xin'anbian Oilfield in the Ordos Basin, tight oil has been integrated officially into the category for reserves evaluation. Geologically, tight oil is characterized by distribution in depressions and slopes of basins, extensive, mature, and high-quality source rocks, large-scale reservoir space with micro- and nanopore throat systems, source rocks and reservoirs in close contact and with continuous distribution, and local "sweet area." The evaluation of the distribution of tight oil "sweet area" should focus on relationships between "six features." These are source properties, lithology, physical properties, brittleness, hydrocarbon potential, and stress anisotropy. In North America, tight oil prospects are distributed in lamellar shale or marl, where natural fractures are fre- quently present, with TOC 〉 4 %, porosity 〉 7 %, brittle mineral content 〉 50 %, oil saturation of 50 %-80 %, API 〉 35~, and pressure coefficient 〉 1.30. In China, tight oil prospects are distributed in lamellar shale, tight sand- stone, or tight carbonate rocks, with TOC 〉 2 %, poros- ity 〉 8 %, brittle mineral content 〉 40 %, oil saturation of 60 %-90 %, low crude oil viscosity, or high formation pressure. Continental tight oil is pervasive in China and its preliminary estimated technically recoverable resources are about (20-25) × lO8^ t.
基金supported by the Natural Science Foundation of China (Grant No. 51574257)National 973 Project (No. 2015CB250900)
文摘Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.
基金supported by the Chinese Major National Scientific and Technological Program (2011ZX05001)Chinese Postdoctoral Fund (2013M540114)
文摘In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accumulation and the tight oil charging process. However, kinetic models used for petroleum development are not applicable for petroleum exploration. In this study, a static resistance model[ is proposed after analyzing resistances in ultra-slow flow in porous media. Using this model, the disco^atinuous pattern of oil charging is reproduced through incompressible Navier-Stokes equations, the phase field method and the finite element method. This study also explains macroscopic percolation behavior with microscopic flow mechanisms and discusses some issues in ultra-slow flow in a micro/nano pore-throat network. The resistance analysis reveals that capillary resistance and dissipation resistance are dominant factors in the mechanism of oil accumulation in tight reservoirs. Numerical simulations show that pressure thresholds exist and result in discontinuous oil charging. Generally, it is proven that the static model is more applicable than kinetic models in describing oil accumulation in tight reservoirs.
文摘Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.
文摘Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale.
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
基金financially supported by the Chinese National Special Plan Project"Formation conditions,enrichment regularity and resource potential of tight oil”(No.2016ZX05046-001)。
文摘Xin’anbian Oilfield of the Ordos Basin is the large tight oilfield to be first exploration discovery in china.The production of tight oil increased significantly in recent years.It shows great exploration potential of Chang 7 tight oil.But the physical property and hydrocarbon enrichment characteristics of Chang 7 tight oil reservoirs were rarely studied,The forming conditions of tight oil reservoirs are systematically summarized and analyzed through the study of hydrocarbon generation,sedimentary reservoirs and hydrocarbon migration and accumulation based on production and core experimental data.The result shows that,The porosity of the Chang 7_(2)reservoir mainly distributed in 5.0-11.0%,average at 7.9%,The permeability mainly distributed in 0.04-0.18×10^(-3)μm^(2),average at 0.12×10^(-3)μm^(2),The pore diameters of the tight oil reservoir distributed in 2-8μm.The high-quality Chang 7_(3)source rocks and the micropsammite of Chang 7_(2)subaqueous distributary channel were widely distributed in the study area.The lenticular or banded sand bodies are distributed among mudstone or hydrocarbon source rocks and have the advantage of migration distance for hydrocarbon accumulation.The reservoir space is composed of micro-nanometer pores and throat,that is formed in the process of increasing pressure during hydrocarbon generation and hydrocarbon accumulation.The Chang 7 tight oil was generated in the early Cretaceous and injected into the sand of the subaqueous distributary channel driven by continuous hydrocarbon generation supercharging.The formation and accumulation of tight oil reservoirs are mainly controlled by source rocks,sedimentary microfacies and reservoirs of good quality.
基金Supported by the National Natural Science Foundation of China(41672118)Strategic Cooperation Science and Technology Project Between China University of Petroleum and Petro China(ZLZX2020-01-06)。
文摘Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,modeling experiment and comprehensive analysis,this study reveals that the tight oil accumulates at start-up pressure,advances under differential pressure,diffuses at alternating fast and low speeds,charges in stepped large area and migrates rapidly through fractures,and enriches in dominant fractures and pores.The root cause of ladder-like charge is the multiple scales of pores.The widespread source rock with high hydrocarbon generation intensity is the material basis for tight oil enrichment;the dominant source reservoir assemblage is the basic unit for tight oil enrichment;fractures and beddings are conducive to local rapid migration of tight oil;fractures and pores work together to control the enrichment of tight oil.Two typical accumulation models of tight oil are established,namely"source reservoir in coexistence,four optimal factors controlling enrichment around central area,and large-scale continuous distribution"for a large freshwater lake clastic rock basin and"source reservoir integration,four optimal factors controlling enrichment,central area distribution,small in size but high in enrichment degree"for a small saline lake diamictite depression.
基金sincerely appreciate the financial support from the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(51834010,51874261,51874337)+1 种基金the Key Research and Development Program of Shaanxi(2021GY-112)a Discovery Grant from Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2017-05080).
文摘The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).
基金This work was jointly supported by National Natural Science Foundation of China(Grant No.41902132,11872363,51861145314)PetroChina Innovation Foundation(Grant No.2019D-5007-0214)+2 种基金Chinese Academy of Sciences(CAS)through the CAS Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program(Grant No.XDB22040401)National Science and Technology Mega Project of China(Grant No.2017ZX05013005-009).
文摘This study aimed to investigate the complete distribution of reservoir space in tight oil sandstone combining casting slices, field emission scanning electron microscopy(FE-SEM), the pore-throat theory model, high-resolution image processing, mathematical statistics, and other technical means. Results of reservoir samples from the Xin’anbian area of Ordos Basin showed that the total pore radius curve of the tight oil sandstone reservoir exhibited a multi-peak distribution, and the peaks appeared to be more focused on the ends of the range. This proved that pores with a radius of 1–50,000 nm provided the most significant storage space for tight oil, indicating that special attention should be paid to this range of the pore size distribution. Meanwhile, the complete throat radius curve of the tight oil sandstone reservoir exhibited a multipeak distribution. However, the peak values were distributed throughout the scales. This confirmed that the throat radius in the tight oil sandstone reservoir was not only in the range of hundreds of nanometers but was also widely distributed in the scale approximately equal to the pore size. The new rapid determination method could provide a precise theoretical basis for the comprehensive evaluation, exploration, and development of a tight oil sandstone reservoir.
基金financial support from the National Natural Science Foundation of China(52074319)the Strategic Cooperation Technology Project of CNPC(ZLZX2020-01-08)the Science Foundation of China University of Petroleum-Beijing(2462021QNXZ008)
文摘Nitrogen huff-n-puff(N_(2)HnP) appears to be an economical and high-efficiency enhanced oil recovery(EOR) technique for tight oil reservoirs.There is however a lack of understanding of the pore-level EOR performance of N2HnP under tight reservoir conditions.In this work,a non-magnetic reactor was created and combined with a nuclear magnetic resonance(NMR) device for real-time monitoring of oil distribution in the HnP experiment.N_(2)HnP experiments were then performed in a tight sandstone core sample at a temperature of 353 K and an injection pressure≥ 24 MPa.The pore-level oil distribution under reservoir conditions was monitored and the EOR performance of N2HnP in specific pores was analyzed.The pore throat structures of the core sample and the phase behavior of the N_(2)-Oil system were analyzed to elucidate the EOR mechanism of N_(2)HnP.An oil recovery factor of 37.52% can be achieved after four cycles,which proves the EOR potential of N_(2)HnP for tight reservoirs.The highest recoveries after N_(2)HnP are obtained in the large pores,followed by the medium pores,the small pores,and finally the micro pores.Increases in soaking time and injection pressure resulted in slight and pronounced increases in oil recovery,respectively,both of which are mainly reflected in the first cycle.Specifically,increasing the soaking time only slightly improves the cumulative oil recovery in the small pores while increasing the injection pressure significantly improves the cumulative oil recovery in the small,medium,and large pores simultaneously.However,variations in both injection pressure and soaking time have a negligible effect on the cumulative oil recovery of the micro pores.
文摘CO_(2)huff and puff experiments of different injection parameters,production parameters and soaking time were carried out on large-scale cubic and long columnar outcrop samples to analyze dynamic characteristics and influencing factors of CO_(2)huff and puff and the contribution of sweeping mode to recovery.The experimental results show that the development process of CO_(2)huff and puff can be divided into four stages,namely,CO_(2)backflow,production of gas with some oil,high-speed oil production,and oil production rate decline stages.The production of gas with some oil stage is dominated by free gas displacement,and the high-speed oil production stage is dominated by dissolved gas displacement.CO_(2)injection volume and development speed are the major factors affecting the oil recovery.The larger the injected CO_(2)volume and the lower the development speed,the higher the oil recovery will be.The reasonable CO_(2)injection volume and development speed should be worked out according to oilfield demand and economic evaluation.There is a reasonable soaking time in CO_(2)huff and puff.Longer soaking time than the optimum time makes little contribution to oil recovery.In field applications,the stability of bottom hole pressure is important to judge whether the soaking time is sufficient during the huff period.The oil recovery of CO_(2)huff and puff mainly comes from the contribution of flow sweep and diffusion sweep,and diffusion sweep contributes more to the oil recovery when the soaking time is sufficient.
基金Supported by the National Science and Technology Major Project of China(2016ZX05046-001).
文摘Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.