The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and...An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.展开更多
Threshold pressure gradient has great importance in efficient tight gas field development as well as for research and laboratory experiments.This experimental study is carried out to investigate the threshold pressure...Threshold pressure gradient has great importance in efficient tight gas field development as well as for research and laboratory experiments.This experimental study is carried out to investigate the threshold pressure gradient in detail.Experiments are carried out with and without back pressure so that the effect of pore pressure on threshold pressure gradient may be observed.The trend of increasing or decreasing the threshold pressure gradient is totally opposite in the cases of considering and not considering the pore pressure.The results demonstrate that the pore pressure of tight gas reservoirs has great influence on threshold pressure gradient.The effects of other parameters like permeability and water saturation,in the presence of pore pressure,on threshold pressure gradient are also examined which show that the threshold pressure gradient increases with either a decrease in permeability or an increase in water saturation.Two new correlations of threshold pressure gradient on the basis of pore pressure and permeability,and pore pressure and water saturation,are also introduced.Based on these equations,new models for tight gas production are proposed.The gas slip correction factor is also considered during derivation of this proposed tight gas production models.Inflow performance relationship curves based on these proposed models show that production rates and absolute open flow potential are always be overestimated while ignoring the threshold pressure gradients.展开更多
Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the...Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.展开更多
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
文摘An artificial-intelligence based decision-making protocol is developed for tight gas sands to identify re-fracturing wells and used in case studies. The methodology is based on fuzzy logic to deal with imprecision and subjectivity through mathematical representations of linguistic vagueness, and is a computing system based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. Five indexes are used to characterize hydraulic fracture quality, reservoir characteristics, operational parameters, initial conditions, and production related to the selection of re-fracturing well, and each index includes 3 related parameters. The value of each index/parameter is grouped into three categories that are low, medium, and high. For each category, a trapezoidal membership function all related rules are defined. The related parameters of an index are input into the rule-based fuzzy-inference system to output value of the index. Another fuzzy-inference system is built with the reservoir index, operational index, initial condition index and production index as input parameters and re-fracturing potential index as output parameter to screen out re-fracturing wells. This approach was successfully validated using published data.
基金supported by the National Science Foundation(51674279,51804328)Major National Science and Technology Project(2017ZX05009-001,2017ZX05069,2017ZX05072)+4 种基金Shandong Province Key Research and Development Program(2018GSF116004)Shandong Province Natural Science Foundation(ZR2018BEE008,ZR2018BEE018)Fundamental Research Funds for the Central Universities(18CX02168A)China Postdoctoral Science Foundation(2018M630813)Postdoctoral Applied Research Project Foundation of Qingdao city(BY201802003)。
文摘Threshold pressure gradient has great importance in efficient tight gas field development as well as for research and laboratory experiments.This experimental study is carried out to investigate the threshold pressure gradient in detail.Experiments are carried out with and without back pressure so that the effect of pore pressure on threshold pressure gradient may be observed.The trend of increasing or decreasing the threshold pressure gradient is totally opposite in the cases of considering and not considering the pore pressure.The results demonstrate that the pore pressure of tight gas reservoirs has great influence on threshold pressure gradient.The effects of other parameters like permeability and water saturation,in the presence of pore pressure,on threshold pressure gradient are also examined which show that the threshold pressure gradient increases with either a decrease in permeability or an increase in water saturation.Two new correlations of threshold pressure gradient on the basis of pore pressure and permeability,and pore pressure and water saturation,are also introduced.Based on these equations,new models for tight gas production are proposed.The gas slip correction factor is also considered during derivation of this proposed tight gas production models.Inflow performance relationship curves based on these proposed models show that production rates and absolute open flow potential are always be overestimated while ignoring the threshold pressure gradients.
基金National Science and Technology Major Project(2016ZX05004-001)China National Petroleum Corporation Science and Technology Project(2021DJ02)。
文摘Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.