期刊文献+
共找到29,357篇文章
< 1 2 250 >
每页显示 20 50 100
Experiment of dynamic seepage of tight/shale oil under matrix fracture coupling
1
作者 DU Meng YANG Zhengming +10 位作者 LYU Weifeng LI Zhongcheng WANG Guofeng CHEN Xinliang QI Xiang YAO Lanlan ZHANG Yuhao JIA Ninghong LI Haibo CHANG Yilin HUO Xu 《Petroleum Exploration and Development》 SCIE 2024年第2期403-415,共13页
A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale ... A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery. 展开更多
关键词 tight oil shale oil physical simulation nuclear magnetic resonance CT scanning dynamic imbibition production performance EOR
下载PDF
Mechanisms and capacity of high-pressure soaking after hydraulic fracturing in tight/shale oil reservoirs 被引量:8
2
作者 Jing Wang Hui-Qing Liu +1 位作者 Gen-Bao Qian Yong-Can Peng 《Petroleum Science》 SCIE CAS CSCD 2021年第2期546-564,共19页
Huff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs.However,the mechanisms and capacity are still unclear,which significantly limits the application... Huff-n-puff by water has been conducted to enhance oil recovery after hydraulic fracturing in tight/shale oil reservoirs.However,the mechanisms and capacity are still unclear,which significantly limits the application of this technique.In order to figure out the mechanisms,the whole process of pressurizing,high-pressure soaking,and depressurizing was firstly discussed,and a mechanistic model was established.Subsequently,the simulation model was verified and employed to investigate the significances of high-pressure soaking,the contributions of different mechanisms,and the sensitivity analysis in different scenarios.The results show that high-pressure soaking plays an essential role in oil production by both imbibition and elasticity after hydraulic fracturing.The contribution of imbibition increases as the increase in bottom hole pressure(BHP),interfacial tension,and specific surface area,but slightly decreases as the oil viscosity increases.In addition,it first decreases and then slightly increases with the increase in matrix permeability.The optimal soaking time is linear with the increases of both oil viscosity and BHP and logarithmically declines with the increase in matrix permeability and specific surface area.Moreover,it shows a rising tendency as the interficial tension(IFT)increases.Overall,a general model was achieved to calculate the optimal soaking time. 展开更多
关键词 Enhanced oil recovery High-pressure soaking Huff-n-puff IMBIBITION tight/shale oil
下载PDF
Distribution patterns of tight sandstone gas and shale gas
3
作者 DAI Jinxing DONG Dazhong +7 位作者 NI Yunyan GONG Deyu HUANG Shipeng HONG Feng ZHANG Yanling LIU Quanyou WU Xiaoqi FENG Ziqi 《Petroleum Exploration and Development》 SCIE 2024年第4期767-779,共13页
Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas ... Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman. 展开更多
关键词 shale gas tight sandstone gas reservoir characteristics continuous accumulation lithologic accumulation anticlinal accumulation synclinal accumulation coal-derived gas oil-type gas
下载PDF
Types and resource potential of continental shale oil in China and its boundary with tight oil 被引量:17
4
作者 ZHAO Wenzhi HU Suyun +4 位作者 HOU Lianhua YANG Tao LI Xin GUO Bincheng YANG Zhi 《Petroleum Exploration and Development》 2020年第1期1-11,共11页
Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation cri... Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil. 展开更多
关键词 shale OIL medium-high MATURITY low-medium MATURITY resource potential tight OIL BOUNDARY shale OIL revolution
下载PDF
Numerical simulation of gas transport mechanisms in tight shale gas reservoirs 被引量:23
5
作者 Yao Jun Sun Hai +2 位作者 Fan Dong-yan Wang Chen-chen Sun Zhi-xue 《Petroleum Science》 SCIE CAS CSCD 2013年第4期528-537,共10页
Due to the nanometer scale pore size and extremely low permeability of a shale matrix,traditional Darcy's law can not exactly describe the combined gas transport mechanisms of viscous flow and Knudsen diffusion.Three... Due to the nanometer scale pore size and extremely low permeability of a shale matrix,traditional Darcy's law can not exactly describe the combined gas transport mechanisms of viscous flow and Knudsen diffusion.Three transport models modified by the Darcy equation with apparent permeability are used to describe the combined gas transport mechanisms in ultra-tight porous media,the result shows that Knudsen diffusion has a great impact on the gas transport and Darcy's law cannot be used in a shale matrix with a pore diameter less than 1 μm.A single porosity model and a double porosity model with consideration of the combined gas transport mechanisms are developed to evaluate the influence of gas transport mechanisms and fracture parameters respectively on shale gas production.The numerical results show that the gas production predicted by Darcy's law is lower than that predicted with consideration of Knudsen diffusion and the tighter the shale matrix,the greater difference of the gas production estimates.In addition,the numerical simulation results indicate that shale fractures have a great impact on shale gas production.Shale gas cannot be produced economically without fractures. 展开更多
关键词 shale gas gas transport mechanisms viscous flow Knudsen diffusion FRACTURE
下载PDF
Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance 被引量:6
6
作者 Fu-Yong Wang Kun Yang Yun Zai 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1209-1220,共12页
Based on the experiments of nitrogen gas adsorption(N_2 GA) and nuclear magnetic resonance(NMR),the multifractal characteristics of pore structures in shale and tight s andstone from the Chang 7 member of Trias sic Ya... Based on the experiments of nitrogen gas adsorption(N_2 GA) and nuclear magnetic resonance(NMR),the multifractal characteristics of pore structures in shale and tight s andstone from the Chang 7 member of Trias sic Yanchang Formation in Ordos Basin,NW China,are investigated.The multifractal spectra obtained from N2 GA and NMR are analyzed with pore throat structure parameters.The results show that the pore size distributions obtained from N2 GA and NMR are different,and the obtained multifractal characteristics vary from each other.The specific surface and total pore volume obtained by N2 GA experiment have correlations with multifractal characteristics.For the core samples with the similar specific surface,the value of the deviation of multifractal spectra Rd increases with the increase in the proportion of large pores.When the proportion of macropores is small,the Rd value will increase with the increase in specific surface.The multifractal characteristics of pore structures are influenced by specific surface area,average pore size and adsorption volume measured from N2 GA experiment.The multifractal characteristic parameters of tight sandstone measured from NMR spectra are larger than those of shale,which may be caused by the differences in pore size distribution and porosity of shale and tight sandstone. 展开更多
关键词 shale tight sandstone Nitrogen adsorption Nuclear magnetic resonance MULTIFRACTAL Pore structure
下载PDF
Experimental study of enhanced oil recovery by CO_(2) huff-n-puff in shales and tight sandstones with fractures 被引量:7
7
作者 Chao-Fan Zhu Wei Guo +4 位作者 You-Ping Wang Ya-Jun Li Hou-Jian Gong Long Xu Ming-Zhe Dong 《Petroleum Science》 SCIE CAS CSCD 2021年第3期852-869,共18页
The fractures and kerogen,which generally exist in the shale,are signifcant to the CO_(2) huf-n-puf in the shale reservoir.It is important to study the efects of fractures and kerogen on oil recovery during CO_(2) huf... The fractures and kerogen,which generally exist in the shale,are signifcant to the CO_(2) huf-n-puf in the shale reservoir.It is important to study the efects of fractures and kerogen on oil recovery during CO_(2) huf-n-puf operations in the fracture-matrix system.In this study,a modifed CO_(2) huf-n-puf experiment method is developed to estimate the recovery factors and the CO_(2) injectivity in the fractured organic-rich shales and tight sandstones.The efects of rock properties,injection pressure,and injection time on the recovery factors and CO_(2) usage efciency in shales and sandstones are discussed,respectively.The results show that although the CO_(2) injectivity in the shale is higher than that in the sandstone with the same porosity;besides,the recovery factors of two shale samples are much lower than that of two sandstone samples.This demonstrates that compared with the tight sandstone,more cycles are needed for the shale to reach a higher recovery factor.Furthermore,there are optimal injection pressures(close to the minimum miscible pressure)and CO_(2) injection volumes for CO_(2) huf-npuf in the shale.Since the optimal CO_(2) injection volume in the shale is higher than that in the sandstone,more injection time is needed to enhance the oil recovery in the shale.There is a reference sense for CO_(2) huf-n-puf in the fractured shale oil reservoir for enhanced oil recovery(EOR)purposes. 展开更多
关键词 shale tight sandstone CO_(2)huf-n-puf Fracture Injectivity of CO_(2)
下载PDF
Theory and practice of unconventional gas exploration in carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China 被引量:2
8
作者 GUO Tonglou XIONG Liang +3 位作者 YE Sujuan DONG Xiaoxia WEI Limin YANG Yingtao 《Petroleum Exploration and Development》 2023年第1期27-42,共16页
Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any s... Unconventional gas in the Sichuan Basin mainly includes shale gas and tight gas.The development of shale gas is mainly concentrated in the Ordovician Wufeng Formation-Silurian Longmaxi Formation,but has not made any significant breakthrough in the Cambrian Qiongzhusi Formation marine shale regardless of exploration efforts for years.The commercial development of tight sandstone gas is mainly concentrated in the Jurassic Shaximiao Formation,but has not been realized in the widespread and thick Triassic Xujiahe Formation.Depending on the geological characteristics of the Qiongzhusi Formation and Xujiahe Formation,the feedback of old wells was analyzed.Then,combining with the accumulation mechanisms of con-ventional gas and shale gas,as well as the oil/gas shows during drilling,changes in production and pressure during develop-ment,and other characteristics,it was proposed to change the exploration and development strategy from source and reservoir exploration to carrier beds exploration.With the combination of effective source rock,effective carrier beds and effective sand-stone or shale as the exploration target,a model of unconventional gas accumulation and enrichment in carrier beds was built.Under the guidance of this study,two significant results have been achieved in practice.First,great breakthrough was made in exploration of the silty shale with low organic matter abundance in the Qiongzhusi Formation,which breaks the traditional approach to prospect shale gas only in organic-rich black shales and realizes a breakthrough in new areas,new layers and new types of shale gas and a transformation of exploration and development of shale gas from single-layer system,Longmaxi For-mation,to multi-layer system in the Sichuan Basin.Second,exploration breakthrough and high-efficient development were re-alized for difficult-to-produce tight sandstone gas reserves in the Xujiahe Formation,which helps address the challenges of low production and unstable production of fracture zones in the Xujiahe Formation,promote the transformation of tight sandstone gas from reserves without production to effective production,and enhance the exploration and development potential of tight sandstonegas. 展开更多
关键词 Sichuan Basin carrier bed tight gas shale gas silty shale Cambrian Qiongzhusi Formation Triassic Xujiahe Formation
下载PDF
Inter-layer interference for multi-layered tight gas reservoir in the absence and presence of movable water 被引量:2
9
作者 Tao Zhang Bin-Rui Wang +5 位作者 Yu-Long Zhao Lie-Hui Zhang Xiang-Yang Qiao Lei Zhang Jing-Jing Guo Hung Vo Thanh 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1751-1764,共14页
Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer ... Due to the dissimilarity among different producing layers,the influences of inter-layer interference on the production performance of a multi-layer gas reservoir are possible.However,systematic studies of inter-layer interference for tight gas reservoirs are really limited,especially for those reservoirs in the presence of water.In this work,five types of possible inter-layer interferences,including both absence and presence of water,are identified for commingled production of tight gas reservoirs.Subsequently,a series of reservoir-scale and pore-scale numerical simulations are conducted to quantify the degree of influence of each type of interference.Consistent field evidence from the Yan'an tight gas reservoir(Ordos Basin,China)is found to support the simulation results.Additionally,suggestions are proposed to mitigate the potential inter-layer interferences.The results indicate that,in the absence of water,commingled production is favorable in two situations:when there is a difference in physical properties and when there is a difference in the pressure system of each layer.For reservoirs with a multi-pressure system,the backflow phenomenon,which significantly influences the production performance,only occurs under extreme conditions(such as very low production rates or well shut-in periods).When water is introduced into the multi-layer system,inter-layer interference becomes nearly inevitable.Perforating both the gas-rich layer and water-rich layer for commingled production is not desirable,as it can trigger water invasion from the water-rich layer into the gas-rich layer.The gas-rich layer might also be interfered with by water from the neighboring unperforated water-rich layer,where the water might break the barrier(eg weak joint surface,cement in fractures)between the two layers and migrate into the gas-rich layer.Additionally,the gas-rich layer could possibly be interfered with by water that accumulates at the bottom of the wellbore due to gravitational differentiation during shut-in operations. 展开更多
关键词 tight gas Comingled production INTERFERENCE Two-phase flow Water blocking
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
10
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity shale oil Micro-scale effect Fractal theory
下载PDF
Effect of fracture fluid flowback on shale microfractures using CT scanning 被引量:2
11
作者 Jiale He Zhihong Zhao +6 位作者 Yiran Geng Yuping Chen Jianchun Guo Cong Lu Shouyi Wang Xueliang Han Jun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期426-436,共11页
The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that o... The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing. 展开更多
关键词 shale Flowback of fracturing fluid MICROFRACTURE Lattice Boltzmann method(LBM)
下载PDF
Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field 被引量:1
12
作者 En-Bin Liu Shen Huang +3 位作者 Ding-Chao Tian Lai-Min Shi Shan-Bi Peng He Zheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1257-1274,共18页
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow... During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%. 展开更多
关键词 shale gas Gas gathering pipeline ELBOW EROSION CFD
下载PDF
Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers 被引量:1
13
作者 Kaiwen Lei Hao Wu +4 位作者 Jerry W Spears Xi Lin Xi Wang Xue Bai Yanling Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1329-1337,共9页
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.... This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein. 展开更多
关键词 IRON yellow-feathered broiler antioxidant function intestinal morphology tight junction protein
下载PDF
Analysis of CH_(4) and H_(2) Adsorption on Heterogeneous Shale Surfaces Using aMolecular Dynamics Approach 被引量:1
14
作者 Surajudeen Sikiru Hassan Soleimani +2 位作者 Amir Rostami Mohammed Falalu Hamza Lukmon Owolabi Afolabi 《Fluid Dynamics & Materials Processing》 EI 2024年第1期31-44,共14页
Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of miner... Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible. 展开更多
关键词 shale gas ADSORPTION METHANE hydrogen molecular dynamic SORPTION
下载PDF
Effect of thermal maturation and organic matter content on oil shale fracturing 被引量:1
15
作者 Fatemeh Saberi Mahboubeh Hosseini‑Barzi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期16-34,共19页
The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and aft... The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings. 展开更多
关键词 Oil shale MICROFRACTURE Hydrocarbon generation Organic matter Thermal maturation Primary migration
下载PDF
Identification and evaluation of shale oil micromigration and its petroleum geological significance 被引量:2
16
作者 HU Tao JIANG Fujie +10 位作者 PANG Xiongqi LIU Yuan WU Guanyun ZHOU Kuo XIAO Huiyi JIANG Zhenxue LI Maowen JIANG Shu HUANG Liliang CHEN Dongxia MENG Qingyang 《Petroleum Exploration and Development》 SCIE 2024年第1期127-140,共14页
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil... Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale. 展开更多
关键词 shale oil micro-migration identification micro-migration evaluation Junggar Basin Mahu Sag Lower Permian Fengcheng Formation hydrocarbon expulsion potential method
下载PDF
Relationship between Natural Fracture and Structural Style and its Implication for Tight Gas Enrichment:A Case Study of Deep Ahe Formation in the Dibei–Tuzi Area,Kuqa Depression 被引量:1
17
作者 XIA Lu XI Kelai +6 位作者 YANG Xianzhang HAN Zhanghua XU Zhenping ZHOU Lu YU Guoding WANG Daoshen WANG Weiyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1086-1110,共25页
The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the r... The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline. 展开更多
关键词 fracture distribution structural style deep tight sandstone electrical image logging Kuqa Depression Tarim Basin
下载PDF
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:1
18
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 tight sandstone Ordos Basin Fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
下载PDF
Discovery of nano organo-clay complex pore-fractures in shale and its scientific significance:A case study of Cretaceous Qingshankou Formation shale,Songliao Basin,NE China 被引量:1
19
作者 SUN Longde WANG Fenglan +5 位作者 BAI Xuefeng FENG Zihui SHAO Hongmei ZENG Huasen GAO Bo WANG Yongchao 《Petroleum Exploration and Development》 SCIE 2024年第4期813-825,共13页
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru... A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws. 展开更多
关键词 Songliao Basin Cretaceous Qingshankou Formation laminar shale oil nanoscale organo-clay complex pore-fractures organo-clay complex diagenesis
下载PDF
Reservoir characteristics and controlling factor of tight sandstone in Shuixigou Group in Taibei depression,Turpan-Hami basin 被引量:1
20
作者 Tong Lin Xuan Chen +3 位作者 Fan Yang Hongguang Gou Mingyu Liu Runze Yang 《Energy Geoscience》 EI 2024年第2期70-80,共11页
The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to... The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag. 展开更多
关键词 Intergranular dissolved pore Organic acid dissolution Secondary dissolution pore tight sandstone Shuixigou group Turpan-Hami basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部