In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solutio...The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa...In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b...We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.展开更多
According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rai...According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.展开更多
In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were sup...In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.展开更多
Bathymetry data are usually obtained via single-beam or multibeam sounding;however,these methods exhibit low efficiency and coverage and are dependent on various parameters,including the condition of the vessel and se...Bathymetry data are usually obtained via single-beam or multibeam sounding;however,these methods exhibit low efficiency and coverage and are dependent on various parameters,including the condition of the vessel and sea state.To overcome these limitations,we propose a method for marine bathymetry inversion based on the satellite altimetry gravity anomaly data as a modification of the gravity-geologic method(GGM),which is a conventional terrain inversion method based on gravity data.In accordance with its principle,the modified method adopts a rectangular prism model for modeling the short-wavelength gravity anomaly and the Tikhonov regularization method to integrate the geophysical constraints,including the a priori water depth data and characteristics of the sea bottom relief.The a priori water depth data can be obtained based on the measurement data obtained from a ship,borehole information,etc.,and the existing bathymetry/terrain model can be considered as the initial model.Marquardt’s method is used during the inversion process,and the regularization parameter can be adaptively determined.The model test and application to the West Philippine Basin indicate the feasibility and eff ectiveness of the proposed method.The results indicate the capability of the proposed method to improve the overall accuracy of the water depth data.Then,the proposed method can be used to conduct a preliminary study of the ocean depths.Additionally,the results show that in the improved GGM,the density diff erence parameter has lost its original physical meaning,and it will not have a great impact on the inversion process.Based on the boundedness of the study area,the inversion result may exhibit a lower confi dence level near the margin than that near the center.Furthermore,the modifi ed GGM is time-and memory-intensive when compared with the conventional GGM.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using dai...Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using daily Quik-SCAT wind speed data and AMSR-E SST data,SSTmeso and WSmeso fields in the western coast of South America are extracted by using a locally weighted regression method(LOESS).The spatial patterns of SSTmeso and WSmeso indicate strong mesoscale SST-wind stress coupling in the region.The coupling coefficient between SSTmeso and WSmeso is about 0.0095 N/(m^2·℃)in winter and 0.0082 N/(m^2·℃)in summer.Based on mesoscale coupling relationships,the mesoscale perturbations of wind stress divergence(Div(WSmeso))and curl(Curl(WSmeso))can be obtained from the SST gradient perturbations,which can be further used to derive wind stress vector perturbations using the Tikhonov regularization method.The computational examples are presented in the western coast of South America and the patterns of the reconstructed WS meso are highly consistent with SSTmeso,but the amplitude can be underestimated significantly.By matching the spatially averaged maximum standard deviations of reconstructed WSmeso magnitude and observations,a reasonable magnitude of WSmeso can be obtained when a rescaling factor of 2.2 is used.As current ocean models forced by prescribed wind cannot adequately capture the mesoscale wind stress response,the empirical wind stress perturbation model developed in this study can be used to take into account the feedback effects of the mesoscale wind stress-SST coupling in ocean modeling.Further applications are discussed for taking into account the feedback effects of the mesoscale coupling in largescale climate models and the uncoupled ocean models.展开更多
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
基金the support of the German Research Foundation,projects BU 2327/19-1 and MO 2962/7-1support from the EPSRC grant EP/R513106/1support from the Alan Turing Institute.
文摘The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61305001the Natural Science Foundation of Heilongjiang Province of China under Grant F201222.
文摘In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
基金supported by National major special equipment development(No.2011YQ120045)The National Natural Science Fund(No.41074050 and 41304023)
文摘We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘According to the conclusion of the simulation experiments in paper I, the Tikhonov regularization method is applied to cyclone wind retrieval with a rain-effect-considering geophysical model function (called CMF+Rain). The CMF+Rain model which is based on the NASA scatterometer-2 (NSCAT2) GMF is presented to compensate for the effects of rain on cyclone wind retrieval. With the multiple solution scheme (MSS), the noise of wind retrieval is effectively suppressed, but the influence of the background increases. It will cause a large wind direction error in ambiguity removal when the background error is large. However, this can be mitigated by the new ambiguity removal method of Tikhonov regularization as proved in the simulation experiments. A case study on an extratropical cyclone of hurricane observed with SeaWinds at 25-km resolution shows that the retrieved wind speed for areas with rain is in better agreement with that derived from the best track analysis for the GMF+Rain model, but the wind direction obtained with the two-dimensional variational (2DVAR) ambiguity removal is incorrect. The new method of Tikhonov regularization effectively improves the performance of wind direction ambiguity removal through choosing appropriate regularization parameters and the retrieved wind speed is almost the same as that obtained from the 2DVAR.
文摘In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.
基金the National Natural Science Foundation of China(Nos.91858212 and U1505232)the Special Project of the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-1)+1 种基金the Supporting Project of the Youth Marine Science Foundation of East China Sea Branch of State Oceanic Administration(No.201704)Open Fund of the Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(No.MGE2020KG02).
文摘Bathymetry data are usually obtained via single-beam or multibeam sounding;however,these methods exhibit low efficiency and coverage and are dependent on various parameters,including the condition of the vessel and sea state.To overcome these limitations,we propose a method for marine bathymetry inversion based on the satellite altimetry gravity anomaly data as a modification of the gravity-geologic method(GGM),which is a conventional terrain inversion method based on gravity data.In accordance with its principle,the modified method adopts a rectangular prism model for modeling the short-wavelength gravity anomaly and the Tikhonov regularization method to integrate the geophysical constraints,including the a priori water depth data and characteristics of the sea bottom relief.The a priori water depth data can be obtained based on the measurement data obtained from a ship,borehole information,etc.,and the existing bathymetry/terrain model can be considered as the initial model.Marquardt’s method is used during the inversion process,and the regularization parameter can be adaptively determined.The model test and application to the West Philippine Basin indicate the feasibility and eff ectiveness of the proposed method.The results indicate the capability of the proposed method to improve the overall accuracy of the water depth data.Then,the proposed method can be used to conduct a preliminary study of the ocean depths.Additionally,the results show that in the improved GGM,the density diff erence parameter has lost its original physical meaning,and it will not have a great impact on the inversion process.Based on the boundedness of the study area,the inversion result may exhibit a lower confi dence level near the margin than that near the center.Furthermore,the modifi ed GGM is time-and memory-intensive when compared with the conventional GGM.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.
基金Supported by the National Key Research and Development Program of China(No.2017YFC1404102(2017YFC1404100))the National Program on Global Change and Air-sea Interaction(No.GASI-IPOVAI-06)+3 种基金the National Natural Science Foundation of China(Nos.41490644(41490640),41690122(41690120))the Chinese Academy of Sciences Strategic Priority Project(No.XDA19060102)the NSFC Shandong Joint Fund for Marine Science Research Centers(No.U1406402)the Taishan Scholarship and the Recruitment Program of Global Experts。
文摘Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using daily Quik-SCAT wind speed data and AMSR-E SST data,SSTmeso and WSmeso fields in the western coast of South America are extracted by using a locally weighted regression method(LOESS).The spatial patterns of SSTmeso and WSmeso indicate strong mesoscale SST-wind stress coupling in the region.The coupling coefficient between SSTmeso and WSmeso is about 0.0095 N/(m^2·℃)in winter and 0.0082 N/(m^2·℃)in summer.Based on mesoscale coupling relationships,the mesoscale perturbations of wind stress divergence(Div(WSmeso))and curl(Curl(WSmeso))can be obtained from the SST gradient perturbations,which can be further used to derive wind stress vector perturbations using the Tikhonov regularization method.The computational examples are presented in the western coast of South America and the patterns of the reconstructed WS meso are highly consistent with SSTmeso,but the amplitude can be underestimated significantly.By matching the spatially averaged maximum standard deviations of reconstructed WSmeso magnitude and observations,a reasonable magnitude of WSmeso can be obtained when a rescaling factor of 2.2 is used.As current ocean models forced by prescribed wind cannot adequately capture the mesoscale wind stress response,the empirical wind stress perturbation model developed in this study can be used to take into account the feedback effects of the mesoscale wind stress-SST coupling in ocean modeling.Further applications are discussed for taking into account the feedback effects of the mesoscale coupling in largescale climate models and the uncoupled ocean models.