Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regul...In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regularization methods to approximate solutions of following variational inequalities: and with operator A being monotone hemi-continuous form real Banach reflexive X into its dual space X*, but instead of knowing the exact data (y<sub>0</sub>, A), we only know its approximate data satisfying certain specified conditions and D is a nonempty convex closed subset of X;the real function f defined on X is assumed to be lower semi-continuous, convex and is not identical to infinity. At the same time, we will evaluate the convergence rate of the approximate solution. The regularization methods here are different from the previous ones.展开更多
The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse he...The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.展开更多
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv...The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.展开更多
In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were sup...In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.展开更多
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed ...Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
Discrete-type continuation method for solving nonlinear system of equations and Tikhonov's regularization method for solving linear ill-posed problems are combined into a stable and widely convergent one for solvi...Discrete-type continuation method for solving nonlinear system of equations and Tikhonov's regularization method for solving linear ill-posed problems are combined into a stable and widely convergent one for solving nonlinear operator equations with difficultly computed and ill-conditioned derivatives. Some results about their convergence are given The application of this method to solve the inverse problem of one-dimensional diffusion equation is demonstrated.展开更多
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction erro...Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.展开更多
Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using dai...Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using daily Quik-SCAT wind speed data and AMSR-E SST data,SSTmeso and WSmeso fields in the western coast of South America are extracted by using a locally weighted regression method(LOESS).The spatial patterns of SSTmeso and WSmeso indicate strong mesoscale SST-wind stress coupling in the region.The coupling coefficient between SSTmeso and WSmeso is about 0.0095 N/(m^2·℃)in winter and 0.0082 N/(m^2·℃)in summer.Based on mesoscale coupling relationships,the mesoscale perturbations of wind stress divergence(Div(WSmeso))and curl(Curl(WSmeso))can be obtained from the SST gradient perturbations,which can be further used to derive wind stress vector perturbations using the Tikhonov regularization method.The computational examples are presented in the western coast of South America and the patterns of the reconstructed WS meso are highly consistent with SSTmeso,but the amplitude can be underestimated significantly.By matching the spatially averaged maximum standard deviations of reconstructed WSmeso magnitude and observations,a reasonable magnitude of WSmeso can be obtained when a rescaling factor of 2.2 is used.As current ocean models forced by prescribed wind cannot adequately capture the mesoscale wind stress response,the empirical wind stress perturbation model developed in this study can be used to take into account the feedback effects of the mesoscale wind stress-SST coupling in ocean modeling.Further applications are discussed for taking into account the feedback effects of the mesoscale coupling in largescale climate models and the uncoupled ocean models.展开更多
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design...Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error esti...In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed method is effective and stable.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology ...Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology has become particularly important and widely used in the field of optimization.In this study,a new CG method was put forward,which combined subspace technology and a cubic regularization model.Besides,a special scaled norm in a cubic regularization model was analyzed.Under certain conditions,some significant characteristics of the search direction were given and the convergence of the algorithm was built.Numerical comparisons show that for the 145 test functions under the CUTEr library,the proposed method is better than two classical CG methods and two new subspaces conjugate gradient methods.展开更多
The layout forms of several breakwater structures can be generalized as asymmetrical arrangements in actual engineering.However,the problem of wave diffraction around asymmetrically arranged breakwaters has not been a...The layout forms of several breakwater structures can be generalized as asymmetrical arrangements in actual engineering.However,the problem of wave diffraction around asymmetrically arranged breakwaters has not been adequately investigated.In this study,we propose an analytical method of wave diffraction for regular waves passing through asymmetrically arranged breakwaters,and we use the Nyström method to obtain the analytical solution numerically.We compared the results of this method with those of previous analytical solutions and with numerical results to demonstrate the validity of our approach.We also provided diffraction coefficient diagrams of breakwaters with different layout forms.Moreover,we described the analytical expression for the problem of diffraction through long-wave incident breakwaters and presented an analysis of the relationship between the diffraction coefficients and the widths of breakwater gates.The analytical method presented in this study contributes to the limited literature on the theory of wave diffraction through asymmetrically arranged breakwaters.展开更多
Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water va...Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water vapor from 1300 nm to 1350 nm,the temperature probability distribution of nonuniform temperature distribution,for which a parabolic temperature profile is selected as an example in this paper,was retrieved by making the use of regularization methods.To examine the effectiveness of regularization methods,truncated singular value decomposition(TSVD),Tikhonov regularization and a revised Tikhonov regularization method were implemented to retrieve the temperature probability distribution.The results derived by using the three regularization methods were compared with that by using constrained linear least-square fitting.The results show that regularization methods not only generate closer temperature probability distributions to the original,but also are less sensitive to measurement noise.Particularly,the revised Tikhonov regularization method generate solutions in better agreement with the original ones than those obtained by using TSVD and Tikhonov regularization methods.The results obtained in this work can enrich the temperature distribution information,which is expected to play a more important role in combustion diagnosis.展开更多
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
文摘In this paper, we study the regularization methods to approximate the solutions of the variational inequalities with monotone hemi-continuous operator having perturbed operators arbitrary. Detail, we shall study regularization methods to approximate solutions of following variational inequalities: and with operator A being monotone hemi-continuous form real Banach reflexive X into its dual space X*, but instead of knowing the exact data (y<sub>0</sub>, A), we only know its approximate data satisfying certain specified conditions and D is a nonempty convex closed subset of X;the real function f defined on X is assumed to be lower semi-continuous, convex and is not identical to infinity. At the same time, we will evaluate the convergence rate of the approximate solution. The regularization methods here are different from the previous ones.
文摘The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.41175025)
文摘The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3.
文摘In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金supported by the National Natural Science Foundation of China(41304022,41174026,41104047)the National 973 Foundation(61322201,2013CB733303)+1 种基金the Key laboratory Foundation of Geo-space Environment and Geodesy of the Ministry of Education(13-01-08)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘Downward continuation is a key step in processing airborne geomagnetic data. However,downward continuation is a typically ill-posed problem because its computation is unstable; thus, regularization methods are needed to realize effective continuation. According to the Poisson integral plane approximate relationship between observation and continuation data, the computation formulae combined with the fast Fourier transform(FFT)algorithm are transformed to a frequency domain for accelerating the computational speed. The iterative Tikhonov regularization method and the iterative Landweber regularization method are used in this paper to overcome instability and improve the precision of the results. The availability of these two iterative regularization methods in the frequency domain is validated by simulated geomagnetic data, and the continuation results show good precision.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.
文摘Discrete-type continuation method for solving nonlinear system of equations and Tikhonov's regularization method for solving linear ill-posed problems are combined into a stable and widely convergent one for solving nonlinear operator equations with difficultly computed and ill-conditioned derivatives. Some results about their convergence are given The application of this method to solve the inverse problem of one-dimensional diffusion equation is demonstrated.
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated 'true' NRCS is calculated from the simulated 'true' wind through the geophysical mode] function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.
基金Supported by the National Key Research and Development Program of China(No.2017YFC1404102(2017YFC1404100))the National Program on Global Change and Air-sea Interaction(No.GASI-IPOVAI-06)+3 种基金the National Natural Science Foundation of China(Nos.41490644(41490640),41690122(41690120))the Chinese Academy of Sciences Strategic Priority Project(No.XDA19060102)the NSFC Shandong Joint Fund for Marine Science Research Centers(No.U1406402)the Taishan Scholarship and the Recruitment Program of Global Experts。
文摘Interaction between mesoscale perturbations of sea surface temperature(SSTmeso)and wind stress(WSmeso)has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer.Using daily Quik-SCAT wind speed data and AMSR-E SST data,SSTmeso and WSmeso fields in the western coast of South America are extracted by using a locally weighted regression method(LOESS).The spatial patterns of SSTmeso and WSmeso indicate strong mesoscale SST-wind stress coupling in the region.The coupling coefficient between SSTmeso and WSmeso is about 0.0095 N/(m^2·℃)in winter and 0.0082 N/(m^2·℃)in summer.Based on mesoscale coupling relationships,the mesoscale perturbations of wind stress divergence(Div(WSmeso))and curl(Curl(WSmeso))can be obtained from the SST gradient perturbations,which can be further used to derive wind stress vector perturbations using the Tikhonov regularization method.The computational examples are presented in the western coast of South America and the patterns of the reconstructed WS meso are highly consistent with SSTmeso,but the amplitude can be underestimated significantly.By matching the spatially averaged maximum standard deviations of reconstructed WSmeso magnitude and observations,a reasonable magnitude of WSmeso can be obtained when a rescaling factor of 2.2 is used.As current ocean models forced by prescribed wind cannot adequately capture the mesoscale wind stress response,the empirical wind stress perturbation model developed in this study can be used to take into account the feedback effects of the mesoscale wind stress-SST coupling in ocean modeling.Further applications are discussed for taking into account the feedback effects of the mesoscale coupling in largescale climate models and the uncoupled ocean models.
基金Project supported by the National Natural Science Foundation of China(No.61603322)the Research Foundation of Education Bureau of Hunan Province of China(No.16C1542)
文摘Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
文摘In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed method is effective and stable.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11901561).
文摘Many methods have been put forward to solve unconstrained optimization problems,among which conjugate gradient method(CG)is very important.With the increasing emergence of large⁃scale problems,the subspace technology has become particularly important and widely used in the field of optimization.In this study,a new CG method was put forward,which combined subspace technology and a cubic regularization model.Besides,a special scaled norm in a cubic regularization model was analyzed.Under certain conditions,some significant characteristics of the search direction were given and the convergence of the algorithm was built.Numerical comparisons show that for the 145 test functions under the CUTEr library,the proposed method is better than two classical CG methods and two new subspaces conjugate gradient methods.
基金supported by the National Natural Science Foundation of China(Grant No.51679132)the Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1427000)Shanghai Frontiers Science Center of“Full Penetration”Far-Reaching Offshore Ocean Energy and Power.
文摘The layout forms of several breakwater structures can be generalized as asymmetrical arrangements in actual engineering.However,the problem of wave diffraction around asymmetrically arranged breakwaters has not been adequately investigated.In this study,we propose an analytical method of wave diffraction for regular waves passing through asymmetrically arranged breakwaters,and we use the Nyström method to obtain the analytical solution numerically.We compared the results of this method with those of previous analytical solutions and with numerical results to demonstrate the validity of our approach.We also provided diffraction coefficient diagrams of breakwaters with different layout forms.Moreover,we described the analytical expression for the problem of diffraction through long-wave incident breakwaters and presented an analysis of the relationship between the diffraction coefficients and the widths of breakwater gates.The analytical method presented in this study contributes to the limited literature on the theory of wave diffraction through asymmetrically arranged breakwaters.
基金support by the National Science Foundation for Distinguished Youth Scholars of China(Grant No.61225006)National Natural Science Foundation of China(Grant No.60972087)Natural Science Foundation of Beijing,China(Grant No.3112018).
文摘Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy(TDLAS)to measure nonuniform temperature distribution.Relying on measurements of 12 absorption transitions of water vapor from 1300 nm to 1350 nm,the temperature probability distribution of nonuniform temperature distribution,for which a parabolic temperature profile is selected as an example in this paper,was retrieved by making the use of regularization methods.To examine the effectiveness of regularization methods,truncated singular value decomposition(TSVD),Tikhonov regularization and a revised Tikhonov regularization method were implemented to retrieve the temperature probability distribution.The results derived by using the three regularization methods were compared with that by using constrained linear least-square fitting.The results show that regularization methods not only generate closer temperature probability distributions to the original,but also are less sensitive to measurement noise.Particularly,the revised Tikhonov regularization method generate solutions in better agreement with the original ones than those obtained by using TSVD and Tikhonov regularization methods.The results obtained in this work can enrich the temperature distribution information,which is expected to play a more important role in combustion diagnosis.