Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.There...Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.展开更多
Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diab...Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diabetic mice were randomly grouped and given 50 mg/kg acarbose or AME(200 mg/kg,100 mg/kg or 50 mg/kg)for four weeks.The body weight,postprandial blood glucose and glycosylated hemoglobin levels were measured during the administration.After the administration,a glucose tolerance test was performed,and the levels of triglycerides,cholesterol and low-density lipoproteins in mice were detected by biochemical test kits.The inhibitory activity of AME onα-glucosidase in vivo and in vitro was determined by enzyme inhibition tests.Results:AME significantly reduced weight gain,postprandial blood glucose,glycosylated hemoglobin and low-density lipoprotein levels in T2DM mice;enhanced glucose tolerance and pancreaticβ-cell function of T2DM mice;inhibitedα-glucosidase activity in mouse intestine in an noncompetitive manner.Conclusion:AME may noncompetitive inhibitα-glucosidase activity and reduce postprandial glucose intake to achieve a therapeutic and regulatory effect on type 2 diabetes.展开更多
[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photos...[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photosynthesis system(Li-6400) was used to determine photosynthetic characteristics of 6-year-old Calophyllum inophyllum Linn.[Result] Both the leaf net photosynthetic rate change and diurnal variation of transpiration rate were single peak type.The relations among the leaf net photosynthetic rate of Calophyllum inophyllum Linn.and photosynthetically active radiation,CO2 concentration and other relevant ecological factors(including transpiration rate, stomatal conductance, difference of vapour pressure and leaf temperature) were two quadratic linear relations.[Conclusion] Calophyllum inophyllum Linn. preferred strong light irradiation and high temperature environment and the experiment has provided foundations for ecological and commercial cultivations.展开更多
Seven extracting temperatures (25, 35, 45, 55, 65, 75, 85℃) and extracting time (30, 40, 50, 60, 70, 80, 90 min) were designed for selecting the optimal extracting time and extracting temperature for ultrasonic e...Seven extracting temperatures (25, 35, 45, 55, 65, 75, 85℃) and extracting time (30, 40, 50, 60, 70, 80, 90 min) were designed for selecting the optimal extracting time and extracting temperature for ultrasonic extraction of T. amurensis flowers. Polysaccharides from T. amurensis flowers were isolated and determined by spectrophotometry. Results show that the optimal ultrasonic temperature was 75℃ and ex tracting time 52 min. The content of polysaccharides in T. amurensis flowers measured by anthrone--H2SO4 colorimetry under 580 nm, was 9.74% with 0.47% of relative standard deviation (RSD, n=3). This study demonstrated that ultrasonic extraction method was simple, and the color of the treated samples was stable in 4 h. The average recovery value for the polysaccharides measured was 99.48%±1.01%, with 0.112% of RSD (n=3).展开更多
基金This work was supported by the Science and Technology Development Plan Project of Jilin Province,China(20200402115NC).
文摘Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.
基金supported by 2020 College Students Innovation and Entrepreneurship Training Program(X202011810069)the National Natural Science Foundation of China(81460591)。
文摘Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diabetic mice were randomly grouped and given 50 mg/kg acarbose or AME(200 mg/kg,100 mg/kg or 50 mg/kg)for four weeks.The body weight,postprandial blood glucose and glycosylated hemoglobin levels were measured during the administration.After the administration,a glucose tolerance test was performed,and the levels of triglycerides,cholesterol and low-density lipoproteins in mice were detected by biochemical test kits.The inhibitory activity of AME onα-glucosidase in vivo and in vitro was determined by enzyme inhibition tests.Results:AME significantly reduced weight gain,postprandial blood glucose,glycosylated hemoglobin and low-density lipoprotein levels in T2DM mice;enhanced glucose tolerance and pancreaticβ-cell function of T2DM mice;inhibitedα-glucosidase activity in mouse intestine in an noncompetitive manner.Conclusion:AME may noncompetitive inhibitα-glucosidase activity and reduce postprandial glucose intake to achieve a therapeutic and regulatory effect on type 2 diabetes.
文摘[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photosynthesis system(Li-6400) was used to determine photosynthetic characteristics of 6-year-old Calophyllum inophyllum Linn.[Result] Both the leaf net photosynthetic rate change and diurnal variation of transpiration rate were single peak type.The relations among the leaf net photosynthetic rate of Calophyllum inophyllum Linn.and photosynthetically active radiation,CO2 concentration and other relevant ecological factors(including transpiration rate, stomatal conductance, difference of vapour pressure and leaf temperature) were two quadratic linear relations.[Conclusion] Calophyllum inophyllum Linn. preferred strong light irradiation and high temperature environment and the experiment has provided foundations for ecological and commercial cultivations.
基金funded by Heilongjiang Tackle Key Program of Science and Technology(GB07B303-03)
文摘Seven extracting temperatures (25, 35, 45, 55, 65, 75, 85℃) and extracting time (30, 40, 50, 60, 70, 80, 90 min) were designed for selecting the optimal extracting time and extracting temperature for ultrasonic extraction of T. amurensis flowers. Polysaccharides from T. amurensis flowers were isolated and determined by spectrophotometry. Results show that the optimal ultrasonic temperature was 75℃ and ex tracting time 52 min. The content of polysaccharides in T. amurensis flowers measured by anthrone--H2SO4 colorimetry under 580 nm, was 9.74% with 0.47% of relative standard deviation (RSD, n=3). This study demonstrated that ultrasonic extraction method was simple, and the color of the treated samples was stable in 4 h. The average recovery value for the polysaccharides measured was 99.48%±1.01%, with 0.112% of RSD (n=3).