期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Changes in SOC and Nutrients under Intensive Tillage in Two Types of Slope Landscapes 被引量:11
1
作者 LI Fucheng ZHANG Jianhui SU Zhengan 《Journal of Mountain Science》 SCIE CSCD 2012年第1期67-76,共10页
The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tilla... The net effect of tillage erosion on soil properties would be associated with the spatial variation in soil constituents,and therefore plays an important role in ecological agriculture.We conducted a consecutive tillage by hoeing 15 times during a period with no rainfall in the two slope landscapes(a linear slope and complex slope) of the Yangtze Three Gorges reservoir areas,to examine the relationship between soil erosion rates and the variations in soil chemical properties and compare the effects of soil redistribution on SOC and nutrients between the linear and complex slopes.After the simulated tillage,notable changes in 137 Cs inventories of the soil occurred in the summit and toeslope positions on the linear slope,while there were significant changes in 137 Cs inventories at convex and concave positions on the complex slope.Soil profile disappeared at the summit slope boundary,with the exposure area of 16.0% and 7.6% of the experimental plot,respectively,for the linear and complex slopes due to no soil replacement.Soil organic C and nutrients were completely depleted with the disappearance of soil profiles at soil eroding zones,whereas a remarkable increase in SOC,total N and available nutrient concentrations of the post-tillage surface soil and a decrease in total nutrient concentrations(P and K) were found at depositional zones on the linear slope.For the complex slope,however,changes in SOC and nutrient concentrations of the post-tillage surface soil exhibited a patterndifferent from that on the linear slope,which showed a remarkable decrease in SOC and total nutrient concentrations but a slight increase in available nutrient concentrations after tillage in the toeslope position.Due to the gradual increase in soil depth from top to bottom of the slope,SOC and nutrient inventories in the soil profiles were significantly correlated with soil redistribution rates on both the linear and complex slopes.Tillage causes remarkable changes of soil chemical properties in the surface soil layer and soil profile,and increases SOC and nutrient inventories for the soil profile downslope in steeply sloping landscapes. 展开更多
关键词 SOC Soil chemical property Complex slope tillage erosion Three Gorges reservoir area
下载PDF
Assessment of Soil Erosion by Compensatory Hoeing Tillage in a Purple Soil 被引量:8
2
作者 SU Zhengan ZHANG Jianhui +1 位作者 XIONG Donghong LIU Gangcai 《Journal of Mountain Science》 SCIE CSCD 2012年第1期59-66,共8页
This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effe... This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades. 展开更多
关键词 Compensatory tillage tillage erosion model 137 Cs Three Gorges Reservoir region China
下载PDF
Simulation of the landform change process on a purple soil slope due to tillage erosion and water erosion using UAV technology 被引量:1
3
作者 YANG Chao SU Zheng-an +6 位作者 FAN Jian-rong FANG Hai-dong SHI Liang-tao ZHANG Jian-hui HE Zhou-yao ZHOU Tao WANG Xiao-yi 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1333-1344,共12页
Both tillage erosion and water erosion are severe erosional forms that occur widely on sloping agricultural land.However,previous studies have rarely considered the process of landform change due to continuous simulat... Both tillage erosion and water erosion are severe erosional forms that occur widely on sloping agricultural land.However,previous studies have rarely considered the process of landform change due to continuous simulation experiments of alternating tillage erosion and water erosion.To identify such changes,we applied a scouring experiment(at a 60 L min-1 water discharge rate based on precipitation data from the local meteorological station and the catchment area in the Yuanmou County,Yunnan Province,China)and a series of simulated tillage experiments where plots were consecutively tilled 5,10,and 15 times in rotation(representing 5 yr,10 yr,and 15 yr of tillage)at slope gradients of 5°,10°,and 20°.Close-range photogrammetry(CRP)employing an unmanned aerial vehicle(UAV)and a real-time kinematic global positioning system(RTK-GPS)was used to measure landform changes,and highresolution digital elevation models(DEMs)were generated to calculate net soil loss volumes.Additionally,the CRP was determined to be accurate and applicable through the use of erosion pins.The average tillage erosion rates were 69.85,131.45,and 155.34 t·hm-2·tillage pass-1,and the average water erosion rates were 1892.52,2961.76,and 4405.93 t·hm-2·h-1 for the 5°,10°,and 20°sloping farmland plots,respectively.The water erosion rates increased as tillage intensity increased,indicating that tillage erosion accelerates water erosion.Following these intensive tillage treatments,slope gradients gradually decreased,while the trend in slope gradients increased in runoff plots at the conclusion of the scouring experiment.Compared to the original plots(prior to our experiments),interactions between tillage and water erosion caused no obvious change in the landform structure of the runoff plots,while the height of all the runoff plots decreased.Our findings showed that both tillage erosion and water erosion caused a pseudo-steady-state landform evolutionary mechanism and resulted in thin soil layers on cultivated land composed of purple soil in China. 展开更多
关键词 Landform change tillage erosion Water erosion Close range photogrammetry Erosion pins Runoff plot
下载PDF
Effect of Soil Erosion on Soil Properties and Crop Yields on Slopes in the Sichuan Basin,China 被引量:28
4
作者 SU Zheng-An ZHANG Jian-Hui NIE Xiao-Jun 《Pedosphere》 SCIE CAS CSCD 2010年第6期736-746,共11页
Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on t... Roles of tillage erosion and water erosion in the development of within-field spatial variation of surface soil properties and soil degradation and their contributions to the reduction of crop yields were studied on three linear slopes in the Sichuan Basin,southwestern China.Tillage erosion was found to be the dominant erosion process at upper slope positions of each linear slope and on the whole short slope (20 m).On the long slope (110 m) and medium slope (40 m),water erosion was the dominant erosion process.Soil organic matter and soil nutrients in the tillage layer were significantly related to slope length and 137 Cs inventories on the long slope; however,there was no significant correlation among them on the short slope,suggesting that water erosion lowered soil quality by transporting SOM and surface soil nutrients selectively from the upper to lower slope positions,while tillage erosion transported soil materials unselectively.On the medium slope,SOM,total N,and available N in the tillage layer were correlated with slope length and the other properties were distributed evenly on the slope,indicating that water erosion on this slope was still the dominant soil redistribution process.Similar patterns were found for the responses of grain yield,aboveground biomass,and harvest index for slopes.These results indicated that tillage erosion was a major cause for soil degradation and grain yield reduction on the linear slopes because it resulted in displacement of the tillage layer soil required for maintaining soil quality and plant growth. 展开更多
关键词 1376s inventory linear slope soil degradation tillage erosion water erosion
原文传递
Soil Enzyme Activities on Eroded Slopes in the Sichuan Basin, China 被引量:7
5
作者 NIE Xiaojun ZHANG Jianhui GAO Han 《Pedosphere》 SCIE CAS CSCD 2015年第4期489-500,共12页
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and eros... Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils. 展开更多
关键词 137Cs technique microbial biomass C N cycle P cycle soil organic C soil redistribution tillage erosion water erosion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部