The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Tw...The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15(SN15) and Shannong 8355(SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers(early initiated tillers) had a higher yield per spike than high-position tillers(late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem(0), the first primary tiller(I) and the second primary tiller(II); and inferior tiller group including the third primary tiller(III) and the first secondary tiller(I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group(0 and I), intermediate tiller group(II and III) and inferior tiller group(I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme(SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content(except for SN15 at 5 days post-anthesis(DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike and MDA content of flag leaf. These results suggested that superior tiller group had stronger leaf photosynthetic capacity, more predominance in terms of grain filling, slower senescence rate, higher biological yield and larger economic coefficient, and therefore, showed greater productive capacity than other tiller groups.展开更多
The use of the power tillers (walking tractors) are increasingly popular in Nigeria among farmers adopting Sawah rice production technology. This study compares the effects of two types of power tillers on physical ...The use of the power tillers (walking tractors) are increasingly popular in Nigeria among farmers adopting Sawah rice production technology. This study compares the effects of two types of power tillers on physical properties of soil and rice yield. because soil properties determine to a large extents rice yield. Data on soil properties and rice yield were collected and subjected to t-test statistics. The results show that, significant differences exit for all the physical properties of soils rice yields from fields where the two power tiller were used with yields from rice field where SHAKTI was used was higher than KUBOTA. It is important that farmers using these models of power tillers for rice production should not only focus on the purchase cost of these power tillers but their overall efficiency in order to achieve the desired high level of yield.展开更多
A japonica variety and its iso-allelic mutant with high tillering ability were used to investigate the differences in grain yield and quality among different tillers. There was a distinct difference in panicle weight ...A japonica variety and its iso-allelic mutant with high tillering ability were used to investigate the differences in grain yield and quality among different tillers. There was a distinct difference in panicle weight among tillers during grain filling for both genotypes, with Xiushui 11 having a greater increase rate in panicle weight, and being earlier in reaching the maximum panicle weight than the mutant. There was a great significant difference between the two genotypes in grain yield and its components, with Xiushui 11 having higher grain yield, more grains per panicle, higher filled grain percentage and grain weight than the mutant for each type of tiller. Moreover, a significant difference was found in grain yield and yield components among different tillers for both genotypes, with grain number per panicle showing the greatest variation over tillers among all yield components. Compared with Xiushui 11, the mutant had higher brown rice rate and greater ratio of length to width of brown rice, and lower chalky rice rate, amylose content, and protein content of rice. Furthermore, there was a significant difference in grain quality among tillers within a plant for both genotypes, with later initiated tillers being lower in chalky rice rate, amylose and protein contents than early initiated ones. The variation of most quality parameters among tillers within a plant was markedly larger for the mutant than for Xiushui 11.展开更多
The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive...The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive effect of SMNT on wheat tillering are not fully elucidated.A split-plot experiment was designed to investigate the combined effects of SMNT and cultivars on tillering of dryland wheat grown under both dry and favorable climates.Application of SMNT to a cultivar with 1-2 tillers exploited both tillering and kernel-number plasticity,increasing the mean grain yield by 20.5%.This increase was attrib-uted primarily to an increased first-tiller emergence rate resulting from increased N uptake,leaf N con-tent,and N remobilization from tillers to their grain.The second and third tillers,as transient sinks,contributed to the tiller survival rate,which depends on tiller leaf number.The increased total N uptake by SMNT also increased the dry mass yield of tillers and the C:N ratio,reducing the asymmetric compe-tition between main stem and tillers.Owing to these beneficial effects,reduced mitogen-activated pro-tein kinase(MAPK)and abscisic acid signals were observed under SMNT,whereas indole-3-acetic acid(IAA)signals and genes involved in DNA replication and mismatch repair were increased.These signals activated three critical transcription factors(the calmodulin-binding transcription activator,GRAS domain,and cysteine-2/histidine-2 family)and further increased rapid drought response and tiller main-tenance after stem extension.Phenylpropanoid biosynthesis,sphingolipid biosynthesis,and galactose metabolism were most relevant to increased tillering under SMNT because of their critical role in drought response and lignin biosynthesis.Our results suggest that straw mulch-based no-tillage activates rapid drought response and improved wheat tillering by coordinating root N uptake,N remobilization,and asymmetric competition between main stem and tillers.展开更多
Nitric oxide (NO) is a key signaling molecule in different physiological processes of plants, including programmed cell death (PCD). PCD of tillers plays an important role in surviving which are major components o...Nitric oxide (NO) is a key signaling molecule in different physiological processes of plants, including programmed cell death (PCD). PCD of tillers plays an important role in surviving which are major components of grain yield. PCD was triggered in wheat leaves of main stem and tillers by NO content under different nitrogen treatments. In wheat, NO could be synthesized endogenously by nitrate reductase (NR). As an inducible enzyme, NR activity was closely related to substrate concentration. Therefore, different nitrogen levels would change NR activity and NO production. The objective of this study was to determine the effects of NR activity, NO production, and the correlation between them on different tillers growth, development, senescence, and kernel protein content under different nitrogen levels. Field-experiments were conducted in 2009-2011 growing seasons, using two wheat cultivars with different spike-types. Results showed that for main stem and primary tillers, NR activity and NO content reached high level at heading stage, while for secondary tiller, the level of NR activity was low, but NO content was high in the present research. The NO synthesis depending on NR activity in wheat leaves was significant in the early growing stage, but the NO synthesis weakened with the progress of growing period. NO was related to the senescence of wheat leaves, but PCD was more sensitive to marked changes of NO content than NO content itself. N application had marked influence on the aging process of primary tiller, while had little influence on that of main stem and secondary tiller. Moreover, N fertilizer application could increase spike rate and protein content of primary tiller by N fertilizer application.展开更多
In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and g...In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and grain yield. The present investigation attempts to discover the manner in which ordered pattern of senescence in basipetal succession impacts source capacity of tillers in two contrasting rice cultivars, namely Lalat (high tillering) and MGD-106 (medium tillering) during the dry season of 2009 and ascertain how tiller production capacity influences dry matter partitioning and tiller dynamics of the plant. In both the rice cultivars, the progress of senescence among different types of tillers was indicated by gradual decline of photosynthetic pigments, total nitrogen and protein concentrations and increase of lipid peroxidation and peroxidase activity of the flag leaf, which affected photosynthetic efficiency. The effects were more pernicious on the newer tillers compared to older tillers. It was observed that metabolic dominance of the older tillers over newer tillers could be accrued due to higher photosynthetic source capacity of the former than that of the latter. It was concluded that flag leaf of a later-initiated tiller is less tolerant to senescence induced photo-oxidative stress, which decreases both source and sink activities. Increase of tiller number and order in rice increases vulnerability of the later-initiated tillers for oxidative stress and grain filling.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high ti...Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Hearing injury due to exposure to excessive noise during general farming activities is a significant problem for farmers.The present investigation was carried out for better understanding of the noise propagation tren...Hearing injury due to exposure to excessive noise during general farming activities is a significant problem for farmers.The present investigation was carried out for better understanding of the noise propagation trends,as well as noise attenuation characteristics of the two different developed power tillers on different surfaces in transportation under Egyptian conditions.In Egypt,the agricultural roads are one of the main problems that limited the usage of farm machinery.In the last few years,it is noticed that the manufacturers and farmers in Egypt applied the diesel engine of command irrigation pump as the source of power for the manufactured power tillers.Besides their on-farm application in Egypt,they are also engaged in transportation of agricultural products and human beings on the asphalt,and dirt rural roads.In spite of their adverse effects due to noise on operators and bystanders,limited information is available concerning the noise investigation of these manufactured machines.The aim of this research was to evaluate the noise propagation trends as well as noise attenuation characteristics of the manufactured power tillers on different surfaces in transportation conditions.The developed power tillers that used in this study were fitted with approximately 6 kW(8 hp)and 7.5 kW(10 hp)diesel engines for two different tillers transport machines.During measurement and recording the sound pressure signals of the power tillers,the variables of engine speeds and gear ratios were varied to cover the most normal range of the power tillers operation in transportation conditions for the asphalt and dirt rural roads.The test sites were prepared according to SAE noise measurement test procedures.The maximum overall noise measured at driver ear’s position at different gear ratios in asphalt,and dirt rural roads were about 98.2 and 92 dB(A)for 1,350 r/min engine speed which is higher than allowable noise exposure prescribed by National Institute for Occupational Safety and Health[1].展开更多
Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yan...Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yangtze River Basin,China since the 2000s.However,the critical traits and mechanisms of the increased grain yield and NUE remain unknown.This study explores the mechanisms underlying these new cultivars’increased grain yield and NUE by studying 21 local cultivars cultivated for three growing seasons from 2016 to 2019.Significantly positive correlations were observed between grain yield and NUE in the three years.The cultivars were grouped into high(HH),medium(MM),and low(LL)grain yield and NUE groups.The HH group exhibited significantly high grain yield and NUE.High grain yield was attributed to more effective ears by high tiller fertility and greater single-spike yield by increasing post-anthesis single-stem biomass.Compared to other groups,the HH group demonstrated a longer leaf stay-green ability and a greater flag leaf photosynthetic rate after anthesis.It also showed higher N accumulation at pre-anthesis,which contributed to increasing N accumulation per stem,including stem and leaf sheath,leaf blade,and unit leaf area at pre-anthesis,and promoting N uptake efficiency,the main contribution of high NUE.Moreover,tiller fertility was positively related to N accumulation per stem,N accumulation per unit leaf area,leaf stay-green ability,and flag leaf photosynthetic rate,which indicates that improving tiller fertility promoted N uptake,leaf N accumulation,and photosynthetic ability,thereby achieving synchronous improvements in grain yield and NUE.Therefore,tiller fertility is proposed as an important kernel indicator that can be used in the breeding and management of cultivars to improve agricultural efficiency and sustainability.展开更多
Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene ...Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.展开更多
Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key...Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.展开更多
Tillering is a crucial trait closely associated with yield potential and environmental adaptation in cereal crops,regulated by the synergy of endogenous(genetic)and exogenous(environmental)factors.The physiological an...Tillering is a crucial trait closely associated with yield potential and environmental adaptation in cereal crops,regulated by the synergy of endogenous(genetic)and exogenous(environmental)factors.The physiological and molecular regulation of tillering has been intensively studied in rice and wheat.However,tillering research on barley is scarce.This review used the recent advances in bioinformatics to map all known and potential barley tiller development genes with their chromosomal genetic and physical positions.Many of them were mapped for the first time.We also discussed tillering regulation at genetic,physiological,and environmental levels.Moreover,we established a novel link between the genetic control of phytohormones and sugars with tillering.We provided evidence of how environmental cues and cropping systems help optimize the tiller number.This comprehensive review enhances the understanding of barley’s physiological and genetic mechanisms controlling tillering and other developmental traits.展开更多
Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing ...Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing research progress on the two processes of rice tiller formation, namely the formation and growth of axillary meristem, this paper reviews the effects of genetic factors, endogenous hormones, and exogenous environment on rice tillering, finding that multiple molecular mechanisms and signal pathways regulating rice tillering cooperate rice tillering, and discusses future research objectives and application of its regulatory mechanism. Elucidation of theis mechanism will be helpful for breeding high-yielding rice cultivars with ideal plant type via molecular design breeding.展开更多
MicroRNAs(miRNAs)are important regulatory elements involved in the regulation of various plant developmental and physiological processes by blocking the expression of target genes.MiR156 and miR529 are two combinatori...MicroRNAs(miRNAs)are important regulatory elements involved in the regulation of various plant developmental and physiological processes by blocking the expression of target genes.MiR156 and miR529 are two combinatorial regulators,which cooperatively target the SQUAMOSA PROMOTER BINDING-LIKE(SPL)family genes.However,there has been no report about the functional conservation and divergence of miR156 and miR529 during plant development to date.In this study,the biological function and relationship of miR156,miR529 and their target Os SPL14 in rice were explored.Overexpression of miR156e or miR529a(miR156e-OE and miR529a-OE)increased the grain size and tiller number but decreased the plant height and panicle length,while an opposite phenotype was observed for their target mimicry(miR156-MIMIC and miR529a-MIMIC)transgenic plants.Stem-loop RT-PCR results revealed ubiquitous expression of miR156 in roots,axillary buds and leaves,while miR529 was preferentially expressed in the panicle.Accordingly,Os SPL14 could be preferentially and precisely cleaved by miR529a in young panicle but by miR156 in vegetative tissues.Transgenic plants generated by the target immune strategy exhibited obvious growth defects upon the blocking of miR156 and/or miR529 function in rice,confirming that both miR156 and miR529 play important roles in controlling rice growth and development.Moreover,the miR156/miR529-Os SPL14 module negatively controlled grain size by regulating the genes associated with grain size and cell cycling,and controlled plant height through a more complicated mechanism.Taken together,our results demonstrate that miR156 and miR529 respectively function dominantly in the vegetative stage and reproductive stage to control rice growth and development by regulating the accumulation of Os SPL14.These findings facilitate a better understanding of the functional conservation and divergence of miR156 and miR529 family in the miRNA combinatorial regulatory network of plants.展开更多
Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombina...Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombinant inbred line(RIL)population were used to map quantitative trait loci(QTL)for TA.Results showed that 470 significant SNPs with 10.4%–28.8%phenotypic variance explained(PVE)were detected in four replicates by a genome-wide association study(GWAS).Haplotype analysis showed that the TA_Hap_4B1 locus on chromosome 4B was a major QTL to regulate wheat TA.Ten QTL were totally detected by linkage mapping with the RIL population,and QTA.hau-4B.1 identified in six environments with the PVE of 7.88%–18.82%was a major and stable QTL.A combined analysis demonstrated that both TA_Hap_4B1 and QTA.hau-4B.1 were co-located on the same region.Moreover,QTA.hau-4B.1 was confirmed by bulked segregant RNA-Seq(BSR-Seq)analysis.Phenotypic analysis showed that QTA.hau-4B.1was also closely related to yield traits.Furthermore,Traes CS4B02G049700 was considered as a candidate gene through analysis of gene sequence and expression.This study can be potentially used in cloning key genes modulating wheat tillering and provides valuable genetic resources for improvement of wheat plant architecture.展开更多
The experiment was conducted at the Plant Physiology Laboratory (central laboratory) and Shade house of Field Laboratory of Agricultural Botany Department, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh unde...The experiment was conducted at the Plant Physiology Laboratory (central laboratory) and Shade house of Field Laboratory of Agricultural Botany Department, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh under a field experiment was also carried out on yield contributing parameters. There were three rice genotypes namely BRRI dhan55 (V<sub>1</sub>), BR6976-2B-15 (V<sub>2</sub>) and tolerant check Hashikalmi (V<sub>3</sub>) and seven water stress were imposed as treatments. The treatments were arranged for 0 days of water stress (control) irrigated continuously throughout the experimental period (T<sub>0</sub>). When the seedlings were 20 days old, water deficit was imposed for seven days (T<sub>1</sub>), when the seedlings were 35 days old, water deficit was imposed for seven days (T<sub>2</sub>), when the seedlings were 55 days old, water deficit was imposed for seven days (T<sub>3</sub>), when the seedlings were 75 days old, water deficit was imposed for seven days (T<sub>4</sub>). When the seedlings were 95 days old, water deficit was imposed for seven days (T<sub>5</sub>) and when the seedlings were 115 days old, water deficit was imposed for seven days (T<sub>6</sub>). BRRI dhan55 and Hashikalmi produced the highest tillers, grains, number of spikelets and yield. The grain sterility percentage is much higher in BR6976-2B-15 due to water stress treatment compared to other genotypes. Grain yield was the highest in BRRI dhan55 and Hashikalmi and gradually decreased with increased water stress treatment compared to other genotypes. Decreased grain yield per plant under water stress treatment reduction of tillers, panicle, filled grains, root, shoot, spikelet/panicle, panicle dry matter content, and with other causes. The harvest index was decreased due to water stress conditions in all the genotypes while less affected in BRRI dhan55 and Hashikalmi.展开更多
Breeding for seedling traits in herbaceous perennial biomass feedstocks that translate into increased biomass yield or quality in established swards could accelerate the development of perennial grass cultivars for bi...Breeding for seedling traits in herbaceous perennial biomass feedstocks that translate into increased biomass yield or quality in established swards could accelerate the development of perennial grass cultivars for bioenergy or forage. In previously reported research, breeding for single large tillers (ST) or multiple tillers (MT, ≥3) six weeks after planting for two generations in big bluestem (Andropogon gerardii Vitman) and switchgrass (Panicum virgatum L.) base populations produced ST and MT populations that differed significantly for seedling and mature plant traits including biomass yield in spaced planted nurseries. Our objective was to evaluate these ST and MT populations in sward trials to determine the effect of these genetic changes on biomass yield and quality when the plants were grown in competitive sward conditions. Big bluestem monocultures of the base, ST, and MT populations were evaluated at three locations in Nebraska in 2001 and 2002 as randomized complete block experiments with four replicates. Switchgrass monocultures of the base, ST, and MT populations were evaluated in 2003, 2004, and 2005 near Mead, NE as a randomized complete block with six replicates. In both big bluestem and switchgrass, the ST and MT populations did not consistently differ from the base population or each other for biomass yield or forage quality. These results demonstrate the importance of evaluating perennial grasses in sward trials and not relying solely on greenhouse-grown plants or space-planted nurseries to develop selection criteria and make selection decisions.展开更多
Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur...Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.展开更多
基金supported by the National Natural Science Foundation of China (31271661)the National Basic Research Program of China (973, 2009CB118602)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest of China (201203100, 201203029)the National Science and Technology Support Program of China (2012BAD04B05)
文摘The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15(SN15) and Shannong 8355(SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers(early initiated tillers) had a higher yield per spike than high-position tillers(late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem(0), the first primary tiller(I) and the second primary tiller(II); and inferior tiller group including the third primary tiller(III) and the first secondary tiller(I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group(0 and I), intermediate tiller group(II and III) and inferior tiller group(I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme(SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content(except for SN15 at 5 days post-anthesis(DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike and MDA content of flag leaf. These results suggested that superior tiller group had stronger leaf photosynthetic capacity, more predominance in terms of grain filling, slower senescence rate, higher biological yield and larger economic coefficient, and therefore, showed greater productive capacity than other tiller groups.
文摘The use of the power tillers (walking tractors) are increasingly popular in Nigeria among farmers adopting Sawah rice production technology. This study compares the effects of two types of power tillers on physical properties of soil and rice yield. because soil properties determine to a large extents rice yield. Data on soil properties and rice yield were collected and subjected to t-test statistics. The results show that, significant differences exit for all the physical properties of soils rice yields from fields where the two power tiller were used with yields from rice field where SHAKTI was used was higher than KUBOTA. It is important that farmers using these models of power tillers for rice production should not only focus on the purchase cost of these power tillers but their overall efficiency in order to achieve the desired high level of yield.
文摘A japonica variety and its iso-allelic mutant with high tillering ability were used to investigate the differences in grain yield and quality among different tillers. There was a distinct difference in panicle weight among tillers during grain filling for both genotypes, with Xiushui 11 having a greater increase rate in panicle weight, and being earlier in reaching the maximum panicle weight than the mutant. There was a great significant difference between the two genotypes in grain yield and its components, with Xiushui 11 having higher grain yield, more grains per panicle, higher filled grain percentage and grain weight than the mutant for each type of tiller. Moreover, a significant difference was found in grain yield and yield components among different tillers for both genotypes, with grain number per panicle showing the greatest variation over tillers among all yield components. Compared with Xiushui 11, the mutant had higher brown rice rate and greater ratio of length to width of brown rice, and lower chalky rice rate, amylose content, and protein content of rice. Furthermore, there was a significant difference in grain quality among tillers within a plant for both genotypes, with later initiated tillers being lower in chalky rice rate, amylose and protein contents than early initiated ones. The variation of most quality parameters among tillers within a plant was markedly larger for the mutant than for Xiushui 11.
基金financial support from the Sichuan Province Science and Technology Support Program (2021YJ0504,2021YFYZ0002)National Key Research and Development Program of China (2016YFD0300406)+1 种基金Special Fund for Agro-scientific Research in the Public Interest (20150312705)the Crops Breeding Project in Sichuan Province (2016NYZ0051,22ZDZX0018)
文摘The moisture-conserving effect of straw mulch-based no-tillage(SMNT)is expected to increase fertile spikes and grain yield in environments with rainfall less than 200 mm.However,the mechanisms under-lying the positive effect of SMNT on wheat tillering are not fully elucidated.A split-plot experiment was designed to investigate the combined effects of SMNT and cultivars on tillering of dryland wheat grown under both dry and favorable climates.Application of SMNT to a cultivar with 1-2 tillers exploited both tillering and kernel-number plasticity,increasing the mean grain yield by 20.5%.This increase was attrib-uted primarily to an increased first-tiller emergence rate resulting from increased N uptake,leaf N con-tent,and N remobilization from tillers to their grain.The second and third tillers,as transient sinks,contributed to the tiller survival rate,which depends on tiller leaf number.The increased total N uptake by SMNT also increased the dry mass yield of tillers and the C:N ratio,reducing the asymmetric compe-tition between main stem and tillers.Owing to these beneficial effects,reduced mitogen-activated pro-tein kinase(MAPK)and abscisic acid signals were observed under SMNT,whereas indole-3-acetic acid(IAA)signals and genes involved in DNA replication and mismatch repair were increased.These signals activated three critical transcription factors(the calmodulin-binding transcription activator,GRAS domain,and cysteine-2/histidine-2 family)and further increased rapid drought response and tiller main-tenance after stem extension.Phenylpropanoid biosynthesis,sphingolipid biosynthesis,and galactose metabolism were most relevant to increased tillering under SMNT because of their critical role in drought response and lignin biosynthesis.Our results suggest that straw mulch-based no-tillage activates rapid drought response and improved wheat tillering by coordinating root N uptake,N remobilization,and asymmetric competition between main stem and tillers.
基金supported by the National Natural Science Foundation of China(31271661, 30871477)the National Basic Research Program of China(2009CB118602)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest of China(201203100)the National Science and Technology Support Program of China(2012BAD04B05)
文摘Nitric oxide (NO) is a key signaling molecule in different physiological processes of plants, including programmed cell death (PCD). PCD of tillers plays an important role in surviving which are major components of grain yield. PCD was triggered in wheat leaves of main stem and tillers by NO content under different nitrogen treatments. In wheat, NO could be synthesized endogenously by nitrate reductase (NR). As an inducible enzyme, NR activity was closely related to substrate concentration. Therefore, different nitrogen levels would change NR activity and NO production. The objective of this study was to determine the effects of NR activity, NO production, and the correlation between them on different tillers growth, development, senescence, and kernel protein content under different nitrogen levels. Field-experiments were conducted in 2009-2011 growing seasons, using two wheat cultivars with different spike-types. Results showed that for main stem and primary tillers, NR activity and NO content reached high level at heading stage, while for secondary tiller, the level of NR activity was low, but NO content was high in the present research. The NO synthesis depending on NR activity in wheat leaves was significant in the early growing stage, but the NO synthesis weakened with the progress of growing period. NO was related to the senescence of wheat leaves, but PCD was more sensitive to marked changes of NO content than NO content itself. N application had marked influence on the aging process of primary tiller, while had little influence on that of main stem and secondary tiller. Moreover, N fertilizer application could increase spike rate and protein content of primary tiller by N fertilizer application.
文摘In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and grain yield. The present investigation attempts to discover the manner in which ordered pattern of senescence in basipetal succession impacts source capacity of tillers in two contrasting rice cultivars, namely Lalat (high tillering) and MGD-106 (medium tillering) during the dry season of 2009 and ascertain how tiller production capacity influences dry matter partitioning and tiller dynamics of the plant. In both the rice cultivars, the progress of senescence among different types of tillers was indicated by gradual decline of photosynthetic pigments, total nitrogen and protein concentrations and increase of lipid peroxidation and peroxidase activity of the flag leaf, which affected photosynthetic efficiency. The effects were more pernicious on the newer tillers compared to older tillers. It was observed that metabolic dominance of the older tillers over newer tillers could be accrued due to higher photosynthetic source capacity of the former than that of the latter. It was concluded that flag leaf of a later-initiated tiller is less tolerant to senescence induced photo-oxidative stress, which decreases both source and sink activities. Increase of tiller number and order in rice increases vulnerability of the later-initiated tillers for oxidative stress and grain filling.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1201600)the National Natural Science Foundation of China(32171964)the Science Fund for Creative Research Groups of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Hearing injury due to exposure to excessive noise during general farming activities is a significant problem for farmers.The present investigation was carried out for better understanding of the noise propagation trends,as well as noise attenuation characteristics of the two different developed power tillers on different surfaces in transportation under Egyptian conditions.In Egypt,the agricultural roads are one of the main problems that limited the usage of farm machinery.In the last few years,it is noticed that the manufacturers and farmers in Egypt applied the diesel engine of command irrigation pump as the source of power for the manufactured power tillers.Besides their on-farm application in Egypt,they are also engaged in transportation of agricultural products and human beings on the asphalt,and dirt rural roads.In spite of their adverse effects due to noise on operators and bystanders,limited information is available concerning the noise investigation of these manufactured machines.The aim of this research was to evaluate the noise propagation trends as well as noise attenuation characteristics of the manufactured power tillers on different surfaces in transportation conditions.The developed power tillers that used in this study were fitted with approximately 6 kW(8 hp)and 7.5 kW(10 hp)diesel engines for two different tillers transport machines.During measurement and recording the sound pressure signals of the power tillers,the variables of engine speeds and gear ratios were varied to cover the most normal range of the power tillers operation in transportation conditions for the asphalt and dirt rural roads.The test sites were prepared according to SAE noise measurement test procedures.The maximum overall noise measured at driver ear’s position at different gear ratios in asphalt,and dirt rural roads were about 98.2 and 92 dB(A)for 1,350 r/min engine speed which is higher than allowable noise exposure prescribed by National Institute for Occupational Safety and Health[1].
基金supported by the National Natural Science Foundation of China(31771711 and 32071953)the National Key Research and Development Program of China(2016YFD0300405)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China,the Project of the Vice General Manager of Science and Technology of Jiangsu Province,China(FZ20211472)the Plan of Gathering 1000 Leading Talents of Suqian,China.
文摘Genetic improvement has promoted wheat’s grain yield and nitrogen use efficiency(NUE)during the past decades.Therefore,the current wheat cultivars exhibit higher grain yield and NUE than previous cultivars in the Yangtze River Basin,China since the 2000s.However,the critical traits and mechanisms of the increased grain yield and NUE remain unknown.This study explores the mechanisms underlying these new cultivars’increased grain yield and NUE by studying 21 local cultivars cultivated for three growing seasons from 2016 to 2019.Significantly positive correlations were observed between grain yield and NUE in the three years.The cultivars were grouped into high(HH),medium(MM),and low(LL)grain yield and NUE groups.The HH group exhibited significantly high grain yield and NUE.High grain yield was attributed to more effective ears by high tiller fertility and greater single-spike yield by increasing post-anthesis single-stem biomass.Compared to other groups,the HH group demonstrated a longer leaf stay-green ability and a greater flag leaf photosynthetic rate after anthesis.It also showed higher N accumulation at pre-anthesis,which contributed to increasing N accumulation per stem,including stem and leaf sheath,leaf blade,and unit leaf area at pre-anthesis,and promoting N uptake efficiency,the main contribution of high NUE.Moreover,tiller fertility was positively related to N accumulation per stem,N accumulation per unit leaf area,leaf stay-green ability,and flag leaf photosynthetic rate,which indicates that improving tiller fertility promoted N uptake,leaf N accumulation,and photosynthetic ability,thereby achieving synchronous improvements in grain yield and NUE.Therefore,tiller fertility is proposed as an important kernel indicator that can be used in the breeding and management of cultivars to improve agricultural efficiency and sustainability.
基金supported by the Top Talents Program"One Case One Discussion(Yishiyiyi)"of Shandong Province and the Natural Science Foundation of Shandong Province(ZR2022MC082).
文摘Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.
基金supported by the National Natural Science Foundation of China(32260498)the Guizhou Provincial Science and Technology Project(qiankehejichu-ZK(2022)Key 008)+2 种基金the Wuhan Science and Technology Project(2020020601012259)the Guizhou Provincial Science and Technology Support Plan(qiankehezhicheng(2022)Key 026)the Key Cultivation Project of Guizhou University(201903)。
文摘Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway.
基金the National Key R&D Program of China(2018YFD1000706)the Key Research Project of Science and Technology Department of Zhejiang Province,China(2021C02064-3)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China.
文摘Tillering is a crucial trait closely associated with yield potential and environmental adaptation in cereal crops,regulated by the synergy of endogenous(genetic)and exogenous(environmental)factors.The physiological and molecular regulation of tillering has been intensively studied in rice and wheat.However,tillering research on barley is scarce.This review used the recent advances in bioinformatics to map all known and potential barley tiller development genes with their chromosomal genetic and physical positions.Many of them were mapped for the first time.We also discussed tillering regulation at genetic,physiological,and environmental levels.Moreover,we established a novel link between the genetic control of phytohormones and sugars with tillering.We provided evidence of how environmental cues and cropping systems help optimize the tiller number.This comprehensive review enhances the understanding of barley’s physiological and genetic mechanisms controlling tillering and other developmental traits.
基金supported by the National Natural Science Foundation of China (32071993, 32188102, 31971872, 31861143006,U2004204)Key Agricultural Technology Project(NK2022010302)。
文摘Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing research progress on the two processes of rice tiller formation, namely the formation and growth of axillary meristem, this paper reviews the effects of genetic factors, endogenous hormones, and exogenous environment on rice tillering, finding that multiple molecular mechanisms and signal pathways regulating rice tillering cooperate rice tillering, and discusses future research objectives and application of its regulatory mechanism. Elucidation of theis mechanism will be helpful for breeding high-yielding rice cultivars with ideal plant type via molecular design breeding.
基金supported by the National Natural Science Foundation of China(32101746,31872811)Hubei Provincial Natural Science Foundation of China(2021CFB033,2022CFB393)。
文摘MicroRNAs(miRNAs)are important regulatory elements involved in the regulation of various plant developmental and physiological processes by blocking the expression of target genes.MiR156 and miR529 are two combinatorial regulators,which cooperatively target the SQUAMOSA PROMOTER BINDING-LIKE(SPL)family genes.However,there has been no report about the functional conservation and divergence of miR156 and miR529 during plant development to date.In this study,the biological function and relationship of miR156,miR529 and their target Os SPL14 in rice were explored.Overexpression of miR156e or miR529a(miR156e-OE and miR529a-OE)increased the grain size and tiller number but decreased the plant height and panicle length,while an opposite phenotype was observed for their target mimicry(miR156-MIMIC and miR529a-MIMIC)transgenic plants.Stem-loop RT-PCR results revealed ubiquitous expression of miR156 in roots,axillary buds and leaves,while miR529 was preferentially expressed in the panicle.Accordingly,Os SPL14 could be preferentially and precisely cleaved by miR529a in young panicle but by miR156 in vegetative tissues.Transgenic plants generated by the target immune strategy exhibited obvious growth defects upon the blocking of miR156 and/or miR529 function in rice,confirming that both miR156 and miR529 play important roles in controlling rice growth and development.Moreover,the miR156/miR529-Os SPL14 module negatively controlled grain size by regulating the genes associated with grain size and cell cycling,and controlled plant height through a more complicated mechanism.Taken together,our results demonstrate that miR156 and miR529 respectively function dominantly in the vegetative stage and reproductive stage to control rice growth and development by regulating the accumulation of Os SPL14.These findings facilitate a better understanding of the functional conservation and divergence of miR156 and miR529 family in the miRNA combinatorial regulatory network of plants.
基金funded by the National Natural Science Foundation of China(31971947 and 32072057)Henan Major Science and Technology Projects(201300110800,201300111600)Key Scientific and Technological Project of Henan Province(222102110026)。
文摘Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombinant inbred line(RIL)population were used to map quantitative trait loci(QTL)for TA.Results showed that 470 significant SNPs with 10.4%–28.8%phenotypic variance explained(PVE)were detected in four replicates by a genome-wide association study(GWAS).Haplotype analysis showed that the TA_Hap_4B1 locus on chromosome 4B was a major QTL to regulate wheat TA.Ten QTL were totally detected by linkage mapping with the RIL population,and QTA.hau-4B.1 identified in six environments with the PVE of 7.88%–18.82%was a major and stable QTL.A combined analysis demonstrated that both TA_Hap_4B1 and QTA.hau-4B.1 were co-located on the same region.Moreover,QTA.hau-4B.1 was confirmed by bulked segregant RNA-Seq(BSR-Seq)analysis.Phenotypic analysis showed that QTA.hau-4B.1was also closely related to yield traits.Furthermore,Traes CS4B02G049700 was considered as a candidate gene through analysis of gene sequence and expression.This study can be potentially used in cloning key genes modulating wheat tillering and provides valuable genetic resources for improvement of wheat plant architecture.
文摘The experiment was conducted at the Plant Physiology Laboratory (central laboratory) and Shade house of Field Laboratory of Agricultural Botany Department, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh under a field experiment was also carried out on yield contributing parameters. There were three rice genotypes namely BRRI dhan55 (V<sub>1</sub>), BR6976-2B-15 (V<sub>2</sub>) and tolerant check Hashikalmi (V<sub>3</sub>) and seven water stress were imposed as treatments. The treatments were arranged for 0 days of water stress (control) irrigated continuously throughout the experimental period (T<sub>0</sub>). When the seedlings were 20 days old, water deficit was imposed for seven days (T<sub>1</sub>), when the seedlings were 35 days old, water deficit was imposed for seven days (T<sub>2</sub>), when the seedlings were 55 days old, water deficit was imposed for seven days (T<sub>3</sub>), when the seedlings were 75 days old, water deficit was imposed for seven days (T<sub>4</sub>). When the seedlings were 95 days old, water deficit was imposed for seven days (T<sub>5</sub>) and when the seedlings were 115 days old, water deficit was imposed for seven days (T<sub>6</sub>). BRRI dhan55 and Hashikalmi produced the highest tillers, grains, number of spikelets and yield. The grain sterility percentage is much higher in BR6976-2B-15 due to water stress treatment compared to other genotypes. Grain yield was the highest in BRRI dhan55 and Hashikalmi and gradually decreased with increased water stress treatment compared to other genotypes. Decreased grain yield per plant under water stress treatment reduction of tillers, panicle, filled grains, root, shoot, spikelet/panicle, panicle dry matter content, and with other causes. The harvest index was decreased due to water stress conditions in all the genotypes while less affected in BRRI dhan55 and Hashikalmi.
文摘Breeding for seedling traits in herbaceous perennial biomass feedstocks that translate into increased biomass yield or quality in established swards could accelerate the development of perennial grass cultivars for bioenergy or forage. In previously reported research, breeding for single large tillers (ST) or multiple tillers (MT, ≥3) six weeks after planting for two generations in big bluestem (Andropogon gerardii Vitman) and switchgrass (Panicum virgatum L.) base populations produced ST and MT populations that differed significantly for seedling and mature plant traits including biomass yield in spaced planted nurseries. Our objective was to evaluate these ST and MT populations in sward trials to determine the effect of these genetic changes on biomass yield and quality when the plants were grown in competitive sward conditions. Big bluestem monocultures of the base, ST, and MT populations were evaluated at three locations in Nebraska in 2001 and 2002 as randomized complete block experiments with four replicates. Switchgrass monocultures of the base, ST, and MT populations were evaluated in 2003, 2004, and 2005 near Mead, NE as a randomized complete block with six replicates. In both big bluestem and switchgrass, the ST and MT populations did not consistently differ from the base population or each other for biomass yield or forage quality. These results demonstrate the importance of evaluating perennial grasses in sward trials and not relying solely on greenhouse-grown plants or space-planted nurseries to develop selection criteria and make selection decisions.
基金Supported by the National Key Technology R&D Program (2007BAD65B01-4)Science and Technology Development Plan of Heilongjiang Province in China (GB06B104-1-5)Key Technology R&D Program of Heilongjiang Province in China (GA09B102-3)
文摘Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.