We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SM...We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.展开更多
a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respe...a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.展开更多
We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam ho...We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.展开更多
In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is prese...In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is presented from a worldwide perspective,followed by an introduction of our current research work on TFBGs at the Institute of Modern Optics,Nankai University(IMONK),including TFBG sensors for single-parameter measurements,temperature cross sensitivity of TFBG sensors,and TFBG-based interrogation technique.Finally,we would make a summary of the related key techniques and a remark on prospects of the research and applications of TFBGs.展开更多
Suppression of stimulated Raman scattering(SRS)by means of chirped and tilted fiber Bragg gratings(CTFBGs)has become a key topic.However,research on high-power systems is still lacking due to two problems.Firstly,afte...Suppression of stimulated Raman scattering(SRS)by means of chirped and tilted fiber Bragg gratings(CTFBGs)has become a key topic.However,research on high-power systems is still lacking due to two problems.Firstly,after the inscription,there are a large number of hydroxyl compounds and hydrogen molecules in CTFBGs that cause significant heating due to their strong infrared absorption.Secondly,CTFBGs can couple Stokes light from the core to the cladding and the coating,which causes serious heating in the coating of the CTFBG.Aimed at overcoming these bottlenecks,a process that combines constant-low-temperature and variable-high-temperature annealing is used to reduce the thermal slope of the CTFBG.Also,a segmented-corrosion cladding power stripping technology is used on the CTFBG to remove the Stokes light which is coupled to the cladding,which solves the problem of overheating in the coating of the CTFBG.Thereby,a CTFBG with both a kilowatt-level power-carrying load and the ability to suppress SRS in a fiber laser has been developed.Further,we establish a kW-level CW oscillator to test the CTFBG.Experimental results demonstrate that the power-carrying load of the CTFBG is close to 1 kW,the thermal slope is lower than 0.015 ℃/W,and the SRS suppression ratio is nearly 23 dB.展开更多
A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is u...A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.展开更多
The cholesterol solution concentration sensing characteristics based on tilted fiber Bragg grating(TFBG) are investigated by means of theoretical analysis and experiments. We prepare two groups of cholesterol solution...The cholesterol solution concentration sensing characteristics based on tilted fiber Bragg grating(TFBG) are investigated by means of theoretical analysis and experiments. We prepare two groups of cholesterol solutions with the same concentration range and different refractive index ranges. The sensitivity of the two groups of solutions was 11.83 pm·m L/mg and 124.79 pm·m L/mg, respectively. The results show that the sensitivity of cholesterol solution can be improved by adjusting the refractive index range. This conclusion is valuable for measuring the concentration of fat-soluble solution.展开更多
Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibe...Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibers.This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses(T)and values of the real part of the refractive index(n).The minimization of an error function computed for each(n,T)pair then provides a solution for the thickness and refractive index of the deposited film and,a posteriori,to verify the deposition rate throughout the process from the time evolution of the wavelength shift data.Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself.The final values obtained by the TFBG(n=2.25,final thickness of 185 nm)were both within 4%of the validation measurements.This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices,such as the optical fiber sensor field.Furthermore,the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates,such as ALD.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775182 and 61505165)Marie Sktodowska-Curie Individual Fellowships in the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.660648)
文摘We proposed and experimentally demonstrated a cascaded tilted fiber Bragg grating(TFBG)for enhanced refractive index sensing.The TFBG is UV-inscribed in series in ordinary single-mode fiber(SMF)and reduced-diameter SMF with the same tilt angle,and then excites two sets of superposed spectral combs of cladding modes.The cascaded TFBG with total length of 18 mm has a much wider wavelength range over 100 nm and narrower wavelength separation than that of a TFBG only in the SMF,enabling an enlarged range and a higher accuracy of refractive index measurement.The fabricated TFBG with the merits of enhanced sensing capability and temperature self-calibration presents great potentials in the biochemical sensing applications.
基金supported by the National 863 Program under Grant No. 2006AA01Z217the National Natural Science Foundation of China under Grant No. 60736039 and 60572018the Technological Tackle Key Problem Project of Tianjin under Grant No. 07ZCKFGX00200.
文摘a novel structure of the pure macro- bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.
文摘We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.
基金This work was jointly supported by the National Key Natural Science Foundation of China under Grant No.60736039the National Natural Science Foundation of China under Grant No.10904075+1 种基金the National Natural Science Foundation of China under Grant No.11004110the Fundamental Research Funds for the Central Universities,the National Key Basic Research and Development Program of China under Grant No.2010CB327605,and the National Natural Science Foundation of China under Grant No.50802044.
文摘In this paper,the mode coupling mechanism of tilted fiber Bragg gratings(TFBGs)is briefly introduced at first.And a general review on the fabrication,theoretical and experimental research development of TFBGs is presented from a worldwide perspective,followed by an introduction of our current research work on TFBGs at the Institute of Modern Optics,Nankai University(IMONK),including TFBG sensors for single-parameter measurements,temperature cross sensitivity of TFBG sensors,and TFBG-based interrogation technique.Finally,we would make a summary of the related key techniques and a remark on prospects of the research and applications of TFBGs.
基金supported by the National Key Research and Development Program of China(No.2017YFB1104400)
文摘Suppression of stimulated Raman scattering(SRS)by means of chirped and tilted fiber Bragg gratings(CTFBGs)has become a key topic.However,research on high-power systems is still lacking due to two problems.Firstly,after the inscription,there are a large number of hydroxyl compounds and hydrogen molecules in CTFBGs that cause significant heating due to their strong infrared absorption.Secondly,CTFBGs can couple Stokes light from the core to the cladding and the coating,which causes serious heating in the coating of the CTFBG.Aimed at overcoming these bottlenecks,a process that combines constant-low-temperature and variable-high-temperature annealing is used to reduce the thermal slope of the CTFBG.Also,a segmented-corrosion cladding power stripping technology is used on the CTFBG to remove the Stokes light which is coupled to the cladding,which solves the problem of overheating in the coating of the CTFBG.Thereby,a CTFBG with both a kilowatt-level power-carrying load and the ability to suppress SRS in a fiber laser has been developed.Further,we establish a kW-level CW oscillator to test the CTFBG.Experimental results demonstrate that the power-carrying load of the CTFBG is close to 1 kW,the thermal slope is lower than 0.015 ℃/W,and the SRS suppression ratio is nearly 23 dB.
基金supported by the National Natural Science Foundation of China(Nos.11674177,61775107,61835006 and 11704283)the Natural Science Foundation of Tianjin in China(No.16JCZDJC31000)the Scientific Research Planning and Development Project of Handan in China(No.1621203035)
文摘A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.
基金supported by the National Natural Science Foundation of China (No.11504434)the Natural Science Foundation of Hunan Province (No.2020JJ4935)。
文摘The cholesterol solution concentration sensing characteristics based on tilted fiber Bragg grating(TFBG) are investigated by means of theoretical analysis and experiments. We prepare two groups of cholesterol solutions with the same concentration range and different refractive index ranges. The sensitivity of the two groups of solutions was 11.83 pm·m L/mg and 124.79 pm·m L/mg, respectively. The results show that the sensitivity of cholesterol solution can be improved by adjusting the refractive index range. This conclusion is valuable for measuring the concentration of fat-soluble solution.
基金the Spanish Ministry of Universities the support of this work through 260 FPU18/03087 grant (Formación de Profesorado Universitario)the Spanish Ministry of Science and Innovation 261 PID2019-106231RB-I00 TEC Research projectNSERC under Grant RGPIN-2019-06255.
文摘Multiple mode resonance shifts in tilted fiber Bragg gratings(TFBGs)are used to simultaneously measure the thickness and the refractive index of TiO_(2) thin films formed by Atomic Layer Deposition(ALD)on optical fibers.This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses(T)and values of the real part of the refractive index(n).The minimization of an error function computed for each(n,T)pair then provides a solution for the thickness and refractive index of the deposited film and,a posteriori,to verify the deposition rate throughout the process from the time evolution of the wavelength shift data.Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself.The final values obtained by the TFBG(n=2.25,final thickness of 185 nm)were both within 4%of the validation measurements.This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices,such as the optical fiber sensor field.Furthermore,the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates,such as ALD.