The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numeri...The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numerically. Thermal deformation of the bush and realistic thermal boundary conditions at oil and bush interface are considered. At each time step a Newton-Raphson method is used to solve the Reynolds equation, film thickness equation and the motion equation of the journal simultaneously to obtain the pressure distribution and the velocity of the journal center. Then the fluid film force is acquired through integral of fluid film force and the acceleration and position of the journal center are acquired through differences of the velocity. The energy equations of the oil film and the bush are solved simultaneously by using an efficient finite difference scheme. Then the transient three dimensional temperature field of the bearing is acquired by combining the energy equations and the Reynolds equation through the nodal temperature and pressure. It is found that the approaches introduced here converge quickly and save calculation time greatly.展开更多
文摘The present paper proposes three-dimensional model necessary to calculate the transient temperature field in a journal bearing submitted to a sudden change in speed and load and analyzes the bearing performance numerically. Thermal deformation of the bush and realistic thermal boundary conditions at oil and bush interface are considered. At each time step a Newton-Raphson method is used to solve the Reynolds equation, film thickness equation and the motion equation of the journal simultaneously to obtain the pressure distribution and the velocity of the journal center. Then the fluid film force is acquired through integral of fluid film force and the acceleration and position of the journal center are acquired through differences of the velocity. The energy equations of the oil film and the bush are solved simultaneously by using an efficient finite difference scheme. Then the transient three dimensional temperature field of the bearing is acquired by combining the energy equations and the Reynolds equation through the nodal temperature and pressure. It is found that the approaches introduced here converge quickly and save calculation time greatly.