In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engine...In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engineering processes as well in order to improve the effectiveness and the efficiency of manufacturing processes in BI (building industry). Focusing on the case study of GLT (glued-laminated timber), this paper shows the procedure of programming a parametric algorithm adopted by authors that pursues two specific design intents: reducing the usage of unneeded high-quality raw material and improving the efficiency of production processes by producing DF (digital fabrication) contents for standard production systems of GLT. According to different European and international standards, thanks to FEM (finite element model) simulations and curvature analysis, the algorithm allows saving at least 33% of high-quality raw material and, according to early first surveys on a standard production system, 30% of operation time among product engineering-processes.展开更多
Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of...Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans.Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding.Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars,sheets and wraps have also been critically reviewed to identify key influencing parameters.Limited research available on the shear performance of FRP reinforced timber beams have been analyzed to determine the influencing factors of the shear performance in timber-FRP beams.The paper finally presents an overall summary of the current-state-of-the-art and proposes some future research directions in the field.展开更多
文摘In the last decade, parametric and generative design techniques become quite popular for form-finding strategies or for pushing automation in design processes. Nevertheless, these techniques could be applied in engineering processes as well in order to improve the effectiveness and the efficiency of manufacturing processes in BI (building industry). Focusing on the case study of GLT (glued-laminated timber), this paper shows the procedure of programming a parametric algorithm adopted by authors that pursues two specific design intents: reducing the usage of unneeded high-quality raw material and improving the efficiency of production processes by producing DF (digital fabrication) contents for standard production systems of GLT. According to different European and international standards, thanks to FEM (finite element model) simulations and curvature analysis, the algorithm allows saving at least 33% of high-quality raw material and, according to early first surveys on a standard production system, 30% of operation time among product engineering-processes.
基金the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)+1 种基金Six Talent Peak High-Level Projects of Jiangsu Province(No.JZ029)Qinglan Project of Jiangsu Higher Education Institutions and the Ministry of Housing and Urban-Rural Science Project of Jiangsu Province under Grant No.JS2021ZD10。
文摘Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans.Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding.Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars,sheets and wraps have also been critically reviewed to identify key influencing parameters.Limited research available on the shear performance of FRP reinforced timber beams have been analyzed to determine the influencing factors of the shear performance in timber-FRP beams.The paper finally presents an overall summary of the current-state-of-the-art and proposes some future research directions in the field.