Traditional wooden joinery is the craft of connecting wood pieces for buildings or producing utensils by utilizing only the geometry of the components and material properties of the wood,without other materials such a...Traditional wooden joinery is the craft of connecting wood pieces for buildings or producing utensils by utilizing only the geometry of the components and material properties of the wood,without other materials such as glue or metal connectors.In its thousands of years of tradition,this construction technique has achieved high accomplishment in both East Asian and European architectural civilizations.Although sharing the same basic principles,joinery techniques vary between regions and cultures,rooted in the geographical environment,available wood species and their material properties,characteristics of craftsmanship,tools,and structural systems.Wood framing systems from China,Japan,and Western Europe are selected for comparison to assess the relationship between wood joinery and other aspects of building technology.The main conclusions include:in East Asia,the building tradition pays great attention to the design and execution of joinery(sunmao榫卯),making it responsible for multiple functions including architectural mechanics and the stability of the entire frame,which leads to a broader role meant by the term“joint”itself,while in Europe joinery is treated as the“node”or literally“joint”of the structure.Although in both East Asia and Europe wooden joinery serves as an aesthetic factor of the structure,its expression in East Asia is subtle,veiled,and restrained,while in Europe it is explicit and direct.The most important lesson we learn from the study of traditional joinery technology is that it should be seen in the context of the building process as a whole,taking into account geographical environment,material resources,craftsmanship,tools,construction methods,structural form,and the structural system.展开更多
We import the vast majority of our construction timber from abroad,some of it from illegally logged sources.Incredibly with our rural economy still in decline we now import even thatching spars from Poland.Meanwhile,m...We import the vast majority of our construction timber from abroad,some of it from illegally logged sources.Incredibly with our rural economy still in decline we now import even thatching spars from Poland.Meanwhile,many privately owned British woods are used only for tax avoidance,recreation,or firewood and are not producing quality timber.What is the way forward for United Kingdom forestry at a time when even our national forests are vulnerable.展开更多
This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames...This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames with timber infill walls(TFTIWs)and one 1/2 scaled timber frame(TF)were fabricated and tested under low-cyclic reversed loading.The failure modes,strength,stiffness,and energy consumption capacity of the TIWs and the TFTIWs were obtained,and the effects of the TIWs on the seismic performance of the TFTIWs were investigated.The results showed that the TIWs can increase the stiffness and ultimate bearing capacity of the TF,up to 60%and 80%,respectively.The strength degradation coefficient of the TFTIWs was slightly higher than that of the TF when the inter-story drift ratio exceeded 0.02 rad,and the TIWs helped to mitigate the strength degradation of the TFTIWs.It was also found that the TFTIWs had a higher cumulative energy dissipation when compared with the TF(up to a 60%increase),indicating the TIWs had reasonably good energy dissipation capacity.When the TIWs generated a solid contribution to the carrying capacity and energy dissipation of the TF,the lateral drift thresholds were 1/100 and 1/43 of the column height,respectively.Furthermore,the TIWs and TFTIWs presented a good ductility,and the TIW could effectively reduce the pull-out amount of the tenon from the mortise of the TF;however,the TIWs had little influence on the stiffness degradation level or improvement of the ductility of the TF.展开更多
Industrialized building systems came into the agenda in response to requirements of earthquake resistance and rapid construction in Turkey after 1999 Izmit earthquake. CFS (cold-formed steel) framing system is able ...Industrialized building systems came into the agenda in response to requirements of earthquake resistance and rapid construction in Turkey after 1999 Izmit earthquake. CFS (cold-formed steel) framing system is able to meet the existing requirements in the field of low rise residential. But, objective comparison is required for the selection of structural systems used in low rise residentials. CFS system is compared with timber frame and reinforced concrete building systems in terms of design and applicability criterion in circumstances of Turkey, and the results of this comparison are presented in this study. In order to compare building systems objectively, a sample project, has been designed and studied on it. Three structural systems have been separately applied over this project designed in consideration of existing housing stock and preferences of the construction industry of Turkey Evaluation method with different values is selected in comparison and properties of three different structural systems are graded according to evaluation method. As a result of comparison, the CFS system is the most advantageous low rise residential prefabricated construction system in terms of design and applicability展开更多
The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon j...The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon joint), Shizigutou mortise-tenon joint, Ban mortise-tenon joint and Mantou mortise-tenon joint. Experiments on thirteen specimens were carried out. Failure modes, hysteresis curves, skeleton curves and rotational stiffness were studied. The results provided a theoretical basis for seismic research, protection and maintenance of Chinese southern traditional timber flame buildings.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.52008194)。
文摘Traditional wooden joinery is the craft of connecting wood pieces for buildings or producing utensils by utilizing only the geometry of the components and material properties of the wood,without other materials such as glue or metal connectors.In its thousands of years of tradition,this construction technique has achieved high accomplishment in both East Asian and European architectural civilizations.Although sharing the same basic principles,joinery techniques vary between regions and cultures,rooted in the geographical environment,available wood species and their material properties,characteristics of craftsmanship,tools,and structural systems.Wood framing systems from China,Japan,and Western Europe are selected for comparison to assess the relationship between wood joinery and other aspects of building technology.The main conclusions include:in East Asia,the building tradition pays great attention to the design and execution of joinery(sunmao榫卯),making it responsible for multiple functions including architectural mechanics and the stability of the entire frame,which leads to a broader role meant by the term“joint”itself,while in Europe joinery is treated as the“node”or literally“joint”of the structure.Although in both East Asia and Europe wooden joinery serves as an aesthetic factor of the structure,its expression in East Asia is subtle,veiled,and restrained,while in Europe it is explicit and direct.The most important lesson we learn from the study of traditional joinery technology is that it should be seen in the context of the building process as a whole,taking into account geographical environment,material resources,craftsmanship,tools,construction methods,structural form,and the structural system.
文摘We import the vast majority of our construction timber from abroad,some of it from illegally logged sources.Incredibly with our rural economy still in decline we now import even thatching spars from Poland.Meanwhile,many privately owned British woods are used only for tax avoidance,recreation,or firewood and are not producing quality timber.What is the way forward for United Kingdom forestry at a time when even our national forests are vulnerable.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2020EEEVL0410National Natural Science Foundation of China under Grant No.51878550Foundation Research Project of Shaanxi Province under Grant No.2021JC-44。
文摘This study investigates the enhanced effect of timber infill walls on the seismic behavior of traditional Chinese timber frames.Two 1/2 scaled traditional Chinese timber infill walls(TIWs),two 1/2 scaled timber frames with timber infill walls(TFTIWs)and one 1/2 scaled timber frame(TF)were fabricated and tested under low-cyclic reversed loading.The failure modes,strength,stiffness,and energy consumption capacity of the TIWs and the TFTIWs were obtained,and the effects of the TIWs on the seismic performance of the TFTIWs were investigated.The results showed that the TIWs can increase the stiffness and ultimate bearing capacity of the TF,up to 60%and 80%,respectively.The strength degradation coefficient of the TFTIWs was slightly higher than that of the TF when the inter-story drift ratio exceeded 0.02 rad,and the TIWs helped to mitigate the strength degradation of the TFTIWs.It was also found that the TFTIWs had a higher cumulative energy dissipation when compared with the TF(up to a 60%increase),indicating the TIWs had reasonably good energy dissipation capacity.When the TIWs generated a solid contribution to the carrying capacity and energy dissipation of the TF,the lateral drift thresholds were 1/100 and 1/43 of the column height,respectively.Furthermore,the TIWs and TFTIWs presented a good ductility,and the TIW could effectively reduce the pull-out amount of the tenon from the mortise of the TF;however,the TIWs had little influence on the stiffness degradation level or improvement of the ductility of the TF.
文摘Industrialized building systems came into the agenda in response to requirements of earthquake resistance and rapid construction in Turkey after 1999 Izmit earthquake. CFS (cold-formed steel) framing system is able to meet the existing requirements in the field of low rise residential. But, objective comparison is required for the selection of structural systems used in low rise residentials. CFS system is compared with timber frame and reinforced concrete building systems in terms of design and applicability criterion in circumstances of Turkey, and the results of this comparison are presented in this study. In order to compare building systems objectively, a sample project, has been designed and studied on it. Three structural systems have been separately applied over this project designed in consideration of existing housing stock and preferences of the construction industry of Turkey Evaluation method with different values is selected in comparison and properties of three different structural systems are graded according to evaluation method. As a result of comparison, the CFS system is the most advantageous low rise residential prefabricated construction system in terms of design and applicability
基金supported by the National Natural Science Foundation of China(Grant No.51008059)China Postdoctoral Science Special Foundation(Grant No.201003543)
文摘The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon joint), Shizigutou mortise-tenon joint, Ban mortise-tenon joint and Mantou mortise-tenon joint. Experiments on thirteen specimens were carried out. Failure modes, hysteresis curves, skeleton curves and rotational stiffness were studied. The results provided a theoretical basis for seismic research, protection and maintenance of Chinese southern traditional timber flame buildings.