This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber...This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.展开更多
Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and C...Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.展开更多
This paper lbcuses on the main characteristics of a tree-shaped timber structural system or simply tree-shaped. One of them is the complexity of its steel connections, responsible for the joint of bar elements, compou...This paper lbcuses on the main characteristics of a tree-shaped timber structural system or simply tree-shaped. One of them is the complexity of its steel connections, responsible for the joint of bar elements, compounding a complex structural system, which requires the application of the CYPECAD software version 2007 to solve the calculations problems. Its efficiency was confirmed by a variety of laboratory tests carried out with the whole structure. The tree-shaped is a timber structure that can be used in a large number of destinations, including residences, malls, sheds, hangars, etc.. Originally, it was conceived based on the well-known masterpiece "Sagrada Familia", whose author was Architect Antoni Gaudi I Cornet (1852-1926) in Barcelona/Spain. It was designed at the end of 19th century and its construction is still not finished. Gaudi inverted the logical order of the gothic concepts, i.e., light weights below and heavy weights above. Based on this concept, he always had in mind the figure of a tree in nature. The tree-shaped follows the same idea, using timber pieces connected by steel plates. Theoretical and numerical analyses have shown its efficiency and lightness for use in timber structures.展开更多
To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,...To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.展开更多
The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony fur...The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.展开更多
The woody structural elements represent a significant portion of old works and historical buildings,and the need for retrofit and strengthening them increases.Glued-in rods are an efficient way of providing stiff,high...The woody structural elements represent a significant portion of old works and historical buildings,and the need for retrofit and strengthening them increases.Glued-in rods are an efficient way of providing stiff,high-capacity connections in timber structures.Those flexible joint systems have the advantages of high load transition,appropriate behavior in case of fire,easy application combined with a high level of prefabrication for fast installation.Besides,the aesthetic appearance of the finished joint also plays an important role.Many experiments were undertaken on this subject in Europe,but a common database about the designing instructions of glued-in rods was never encouraged.This paper aims at summarizing the different factors that can affect repairs made with glued-in rods and their influence on said repairs.展开更多
This article presents experimental results of steel-timber-steel(STS)joints loaded parallel to grain.Eight groups of specimens were designed,and tensile tests were performed.The fastener types and fastener numbers wer...This article presents experimental results of steel-timber-steel(STS)joints loaded parallel to grain.Eight groups of specimens were designed,and tensile tests were performed.The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints.The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners.The experimental results were discussed in terms of yielding and ultimate strengths,slip stiffness,and ductility factors.The ductility classification and failure mechanisms of each group of specimens were analyzed.It was demonstrated that the STS joint with large diameter steel-tubes showed acceptable ductility,which was close to the ductility of the STS joint with small diameter screws,thanks to the hollow structure of the steel-tube.The theoretical strengths of various failure modes for the joints with small diameter screws or large diameter steel-tubes were calculated and compared with the experimental results.The ductile performance of the STS joint was discussed by comparing the theoretical strengths of various failure modes.The effective number of the STS joint with multifasteners was also analyzed by considering the failure mechanisms in aspects of tensile strength and slip stiffness.展开更多
The twenty-first century is one of the most complex in the history of humanity,mainly due to the ecological crisis it is going through.The construction sector generates about 40%of CO2 emissions into the environment;t...The twenty-first century is one of the most complex in the history of humanity,mainly due to the ecological crisis it is going through.The construction sector generates about 40%of CO2 emissions into the environment;the foregoing should motivate this sector to seek new alternatives to develop new building practices.Taking these current needs into account,this document classifies and presents a multidisciplinary solution that integrates biology,engineering and architecture to develop a new and innovative lightweight timber structure;it divides with a main structure made of timber and an innovative joint system made of bio-polymers connecting all the panels.Through the study of diatoms,it was able to analyze the bio-morphology of the structure,joints and in particular the geometry since they were the inspiration for the design of this structure that presents an innovative and novel design of structural optimization.Through parametric design and digital fabrication,it was able to create a complex geometry that obtains excellent structural behavior.This research discusses and explores how materials,geometry led to the optimization of a structure and how new structures can arise,thanks to biology new solutions can be obtained that are completely sustainable,being a clear example of how to combat the effects of the climate change and in a precise way it highlights the advantages of the bio-design in the architectural design.展开更多
This project deals with architecture and engineering involved in the process of architectural design.Based on native irregular components,it aims at developing an innovative approach in the conception and rationalizat...This project deals with architecture and engineering involved in the process of architectural design.Based on native irregular components,it aims at developing an innovative approach in the conception and rationalization of non-standard structures.Contemporary architecture and its non-classical structures require the design of customized pieces.This process which is highly energy and resources consumptive does not always take into account the inherent material properties.This project develops a way of optimizing,in architectural structures,the use of native wood pieces that are not industrially transformed(e.g.boughs)or of reused pieces of carpentry.As a consequence,the ecological footprint of the structures would be reduced.展开更多
文摘This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.
文摘Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.
文摘This paper lbcuses on the main characteristics of a tree-shaped timber structural system or simply tree-shaped. One of them is the complexity of its steel connections, responsible for the joint of bar elements, compounding a complex structural system, which requires the application of the CYPECAD software version 2007 to solve the calculations problems. Its efficiency was confirmed by a variety of laboratory tests carried out with the whole structure. The tree-shaped is a timber structure that can be used in a large number of destinations, including residences, malls, sheds, hangars, etc.. Originally, it was conceived based on the well-known masterpiece "Sagrada Familia", whose author was Architect Antoni Gaudi I Cornet (1852-1926) in Barcelona/Spain. It was designed at the end of 19th century and its construction is still not finished. Gaudi inverted the logical order of the gothic concepts, i.e., light weights below and heavy weights above. Based on this concept, he always had in mind the figure of a tree in nature. The tree-shaped follows the same idea, using timber pieces connected by steel plates. Theoretical and numerical analyses have shown its efficiency and lightness for use in timber structures.
基金This study was funded by Co-Innovation Center of Efficient Processing and Utilization of Forest Resources(Nanjing Forestry University,Nanjing,210037,China).
文摘To improve the impact sound insulation performance of building floors and meet the objective requirements for living comfort of residents,in this article,three kinds of elastic cushion materials,Portuguese cork board,BGL insulation sound insulation foam board,and EPP polypropylene plastic foam board,are applied to the sound insulation of a light frame wood floor structure of the same bedroom and compared to the ordinary floor.This study uses the transfer function method and transient excitation method to measure the sound insulation,damping ratio,and elastic modulus of materials,as well as the sound insulation of the floor under the jumping excitation method of daily behavior.Through comparative analysis,the results and factors of improving the sound insulation performance of the floor are obtained,according to which three types of elastic cushion materials and the floor covering composed of them have higher vibration and noise reduction performance.Among them,the overall sound insulation performance of BGL board floor is the highest,followed by EPP board and cork board floor,and ordinary OSB floor is the lowest.Under the jumping excitation method,three floating floors can improve the impact sound insulation performance of the middle and low-frequency bands.
文摘The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.
文摘The woody structural elements represent a significant portion of old works and historical buildings,and the need for retrofit and strengthening them increases.Glued-in rods are an efficient way of providing stiff,high-capacity connections in timber structures.Those flexible joint systems have the advantages of high load transition,appropriate behavior in case of fire,easy application combined with a high level of prefabrication for fast installation.Besides,the aesthetic appearance of the finished joint also plays an important role.Many experiments were undertaken on this subject in Europe,but a common database about the designing instructions of glued-in rods was never encouraged.This paper aims at summarizing the different factors that can affect repairs made with glued-in rods and their influence on said repairs.
基金supported by National Natural Science Foundation of China(Grant Nos.52208253,51878344)Postdoctoral Foundation of Jiangsu Province(Grant No.2021K128B)Jiangsu Funding Program for Excellent Postdoctoral Talent,which are highly appreciated.
文摘This article presents experimental results of steel-timber-steel(STS)joints loaded parallel to grain.Eight groups of specimens were designed,and tensile tests were performed.The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints.The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners.The experimental results were discussed in terms of yielding and ultimate strengths,slip stiffness,and ductility factors.The ductility classification and failure mechanisms of each group of specimens were analyzed.It was demonstrated that the STS joint with large diameter steel-tubes showed acceptable ductility,which was close to the ductility of the STS joint with small diameter screws,thanks to the hollow structure of the steel-tube.The theoretical strengths of various failure modes for the joints with small diameter screws or large diameter steel-tubes were calculated and compared with the experimental results.The ductile performance of the STS joint was discussed by comparing the theoretical strengths of various failure modes.The effective number of the STS joint with multifasteners was also analyzed by considering the failure mechanisms in aspects of tensile strength and slip stiffness.
文摘The twenty-first century is one of the most complex in the history of humanity,mainly due to the ecological crisis it is going through.The construction sector generates about 40%of CO2 emissions into the environment;the foregoing should motivate this sector to seek new alternatives to develop new building practices.Taking these current needs into account,this document classifies and presents a multidisciplinary solution that integrates biology,engineering and architecture to develop a new and innovative lightweight timber structure;it divides with a main structure made of timber and an innovative joint system made of bio-polymers connecting all the panels.Through the study of diatoms,it was able to analyze the bio-morphology of the structure,joints and in particular the geometry since they were the inspiration for the design of this structure that presents an innovative and novel design of structural optimization.Through parametric design and digital fabrication,it was able to create a complex geometry that obtains excellent structural behavior.This research discusses and explores how materials,geometry led to the optimization of a structure and how new structures can arise,thanks to biology new solutions can be obtained that are completely sustainable,being a clear example of how to combat the effects of the climate change and in a precise way it highlights the advantages of the bio-design in the architectural design.
文摘This project deals with architecture and engineering involved in the process of architectural design.Based on native irregular components,it aims at developing an innovative approach in the conception and rationalization of non-standard structures.Contemporary architecture and its non-classical structures require the design of customized pieces.This process which is highly energy and resources consumptive does not always take into account the inherent material properties.This project develops a way of optimizing,in architectural structures,the use of native wood pieces that are not industrially transformed(e.g.boughs)or of reused pieces of carpentry.As a consequence,the ecological footprint of the structures would be reduced.