期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Stability of alpine timberline ecotone on Taibai Mountain,China 被引量:6
1
作者 Cui Hai ting, Dai Jun hu, Tang Zhi yao, Huang Yong mei, Cao Yan li Department of Urban and Environmental Sciences, Peking University, Beijing 100871, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1999年第2期80-83,共4页
Landscape boundaries are always indicated by the vegetation boundaries. As an ecotone between closed forest and treeline, alpine timberline may respond to global climate changes sensitively. The stability of timberlin... Landscape boundaries are always indicated by the vegetation boundaries. As an ecotone between closed forest and treeline, alpine timberline may respond to global climate changes sensitively. The stability of timberline and treeline depend not only on climate change, but also on the interaction of both sides of the ecosystems. Three natural boundaries existing in the timberline transitional zone are recognized: (1) timberline (upper limit of closed forest zone); (2) treeline (upper limit of tree islands zone); (3) tree species line (upper limit of individual tree growth). Paleobotanical and sedimentary evidences suggest that there were several times of climate fluctuation during the Holocene period in this area. The timberline of Taibai Mountain must have moved for four times on the millennium scale. Being a stochastic oscillation boundary, treeline appears in a semi stable condition on the century scale. The tree species line is even more unstable, which appears in an unstable status on the decades scale. The comparison of the stability within several landscape boundaries, shed light on the sensibility of these communities to various perturbation and environmental heterogeneity, i.e., herb community is the most sensitive one, which is followed by shrubs, and forest is the most stable one. Trees and shrubs can adapt to rocky and poor soils. On the contrary, alpine herbs are able to adapt to wetter and cooler soils. Finally, under a scenario of a temperature of 1.5 4.5℃ increase, the present timberline will be relatively stable but treeline and tree species line will move upward. 展开更多
关键词 landscape boundaries STABILITY alpine timberline.
下载PDF
Characteristics of timberline and treeline altitudinal distribution in Mt.Namjagbarwa and their geographical interpretation 被引量:1
2
作者 MU Hao-xiang HAN Fang +3 位作者 ZHANG Bai-ping LIANG Tian WANG Zhi-yong WANG Zhe 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2846-2860,共15页
Different types of vegetation patches are alternately and randomly distributed in a timberline ecotone where the upper limit is the treeline and the lower limit is the timberline.However,most studies on timberline/tre... Different types of vegetation patches are alternately and randomly distributed in a timberline ecotone where the upper limit is the treeline and the lower limit is the timberline.However,most studies on timberline/treeline altitudinal distributions have simplified timberline or treeline as continuous curves and disregarded the fuzziness of timberline/treeline and the randomness of different vegetation patch distributions in a timberline ecotone.To study the altitudinal distribution characteristics of timberline and treeline from the perspective of uncertainty theory,we constructed the timberline and treeline elevation cloud models in Mt.Namjagbarwa in east Himalayas.Subsequently,we established multiple linear regression models by using nine influencing factors,namely,aspect,slope,topographic relief,dryness index,average temperature in January and July,latitude,summit syndrome(represented by the vertical distance from the peak),and snow effect(represented by the nearest distance from the snow)as independent variables,and the elevations of timberline/treeline as dependent variables.Then we compared the contributions of the nine factors in timberline,treeline,and the core and peripheral areas of timberline and treeline.The results show that 1)the timberline/treeline elevation cloud model can represent the overall characteristics(especially the uncertainty)of the altitudinal distributions of the timberline/treeline well.The uncertainty of treeline’s altitudinal distribution is higher than that of timberline(entropy and hyper entropy:207.59 m and 70.36 m for treeline elevation cloud;entropy and hyper entropy:191.17 m and 50.13 m for timberline elevation cloud).2)The influence of climate and topography on timberline and treeline are similar.The average temperature in July has a significant negative correlation with the timberline/treeline elevation in Mt.Namjagbarwa,which is the most critical factor that affects timberline and treeline elevation,explaining the altitudinal distribution of 44.01%timberline and 46.74%treeline.However,the contributions of the nine factors in core and peripheral areas of timberline and treeline area are evidently different. 展开更多
关键词 timberline TREELINE Geographical interpretation Uncertainty Influencing factors Mt.Namjagbarwa
下载PDF
Identification and spatial pattern analysis of alpine timberline by remote sensing methods in Yarlung Zangpo Grand Canyon 被引量:1
3
作者 ZHU Bei WANG Shi-yan +6 位作者 SU Wei CHEN Kai-qi LIU Chang DU Yan-liang WANG Liang HAN Zhen ZOU Jiang-xiang 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2304-2314,共11页
As an important ecotone,the alpine timberline is the boundary between closed-canopy montane forest and alpine vegetation,and is highly sensitive to global and regional climate changes.We provided a way to identify and... As an important ecotone,the alpine timberline is the boundary between closed-canopy montane forest and alpine vegetation,and is highly sensitive to global and regional climate changes.We provided a way to identify and extract the alpine timberline in Yarlung Zangpo Grand Canyon Nature Reserve by using remote sensing data and spatial analysis based on land use/land cover classification and NDVI distribution characteristics.Combining DEM data,the influence of slope and aspect on the distribution of alpine timberline was explored.The results showed that the alpine timberline in Yarlung Zangpo Grand Canyon is transitional timberline,with the upper boundary approximately distributed at the elevation of 3422-4373 m,the lower boundary at approximately 3270-4164 m,with a width of about 110-280 m.Alpine timberline was mainly distributed on steep and very steep slopes ranging from 25°to 45°.The maximum elevation of both the upper and lower boundaries occurred on steep slopes.The distribution of alpine timberline varies with aspects,with sunny slopes having a higher boundary than shady slopes. 展开更多
关键词 Alpine timberline ASPECT Normalized Difference Vegetation Index Remote sensing classification SLOPE
下载PDF
学习国外先进技术 提升企业信息化管理水平——对美国“Timberline管理软件”的思考
4
作者 李燕凌 《中国建设信息》 2003年第282期25-28,共4页
为学习国外先进的软件管理技术,提升我国施工企业信息化管理水平,最近,中建一局(集团)公司牵头组织了局机关部门和下属公司人员赴澳大利亚,对美国“Timberline”软件公司的管理软件进行了考察和交流。 通过考察和交流,更清楚地看到了我... 为学习国外先进的软件管理技术,提升我国施工企业信息化管理水平,最近,中建一局(集团)公司牵头组织了局机关部门和下属公司人员赴澳大利亚,对美国“Timberline”软件公司的管理软件进行了考察和交流。 通过考察和交流,更清楚地看到了我们与国外企业信息化管理的差距。 展开更多
关键词 国外 企业信息化管理 timberline管理软件”
下载PDF
A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere 被引量:10
5
作者 ZHAO Fang ZHANG Baiping +1 位作者 PANG Yu YAO Yonghui 《Journal of Geographical Sciences》 SCIE CSCD 2014年第2期226-236,共11页
Alpine timberline, as the "ecologica tion of scientists in many fields, especially in transition zone," has long attracted the atten- recent years. Many unitary and dibasic fitting models have been developed to expl... Alpine timberline, as the "ecologica tion of scientists in many fields, especially in transition zone," has long attracted the atten- recent years. Many unitary and dibasic fitting models have been developed to explore the relationship between timberline elevation and latitude or temperature. However, these models are usually on regional scale and could not be applied to other regions; on the other hand, hemispherical-scale and continental-scale models are usually based on about 100 timberline data and are necessarily low in precision. The present article collects 516 data sites of timberline, and takes latitude, continentality and mass elevation effect (MEE) as independent variables and timberline elevation as dependent variable to develop a ternary linear regression meteorological data released by WorldClim and model. Continentality is calculated using the mountain base elevation (as a proxy of mass elevation effect) is extracted on the basis of SRTM 90-meter resolution elevation data. The results show that the coefficient of determination (R2) of the linear model is as high as 0.904, and that the contribution rate of latitude, continentality and MEE to timberline elevation is 45.02% (p=0.000), 6.04% (p=0.000) and 48.94% (p=0.000), respectively. This means that MEE is simply the primary factor contributing to the elevation distribution of timberline on the continental and hemispherical scales. The contribution rate of MEE to timberline altitude dif- fers in different regions, e.g., 50.49% (p=0.000) in North America, 48.73% (p=0.000) in the eastern Eurasia, and 43.6% (p=0.000) in the western Eurasia, but it is usually very high. 展开更多
关键词 Northern Hemisphere altitudinal distribution of timberline mass elevation effect mountain base elevation multiple linear regression
原文传递
Larch growth across thermal and moisture gradients in the Siberian Mountains
6
作者 KHARUK Viacheslav I. PETROV Il'ya A. +3 位作者 GOLYUKOV Alexey S. DVINSKAYA Maria L. IM Sergei T. SHUSHPANOV Alexander S. 《Journal of Mountain Science》 SCIE CSCD 2023年第1期101-114,共14页
Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-... Climate-driven changes in the thermal and moisture regimes may variously influence different tree species growth and ranges.We hypothesize that drought resistant Siberian larch(Larix sibirica Ledeb.)and precipitation-sensitive Siberian pine(Pinus sibirica Du Tour)responded differently to climate change along the elevational thermal and precipitation gradients.We studied the influence of air temperature,precipitation,soil moisture,and atmospheric drought(indicated by the drought index SPEI)on larch and pine growth along the southward megaslope of the West Sayan Ridge.We found that since 2000 climate change resulted in increasing larch and pine radial growth index(GI)(c.1.5–3times)within treeline(2000–2300 m)and timberline(1900–2000 m)ecotones,i.e.within high precipitation zones.Within the forest-steppe ecotone(1100–1200 m)in which L.sibirica is the only species,larch GI stagnated or even decreased.The total forested area increased since 2000 up to+50%in the high elevations,whereas in the low elevations(<1400 m)area changes were negligible.Within treeline and timberline,trees’GI was stimulated by summer temperature.Meanwhile,temperature increase in early spring reduces GI due to living tissue activation followed by tissue damage by desiccation.Within forest-steppe,larch radial growth was mostly dependent on soil moisture.Warming shifted dependence on moisture to the early dates of the growing period.Acute droughts decreased GI within forest-steppe as well as within treeline,whereas the drought influence on both species within highlands was insignificant.Within forest-steppe seedlings establishment was poor,whereas it was successful within treeline and timberline.Current climate change leads to stagnation or even decrease in Larix sibirica growth in the southern lowland habitat.In combination with poor seedlings establishment,reduced growth threatens the transformation of open lowland forests into forest-steppe and steppe communities.Meanwhile,in the highlands warming facilitated the growth of Siberian larch and pine and the increase of forested area. 展开更多
关键词 LARCH Siberian pine Climate influence on tree radial growth Mountain forests TREELINE timberline Foreststeppe Drought stress Moisture stress
下载PDF
Larix olgensis growth-climate response between lower and upper elevation limits:an intensive study along the eastern slope of the Changbai Mountains,northeastern China 被引量:7
7
作者 Jian Yu Qijing Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期231-244,共14页
Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width... Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width and biomass chronologies across a range of elevations in the subalpine forests on the eastern slope of the Changbai Mountains.We used dendroclimatic analyses to study key factors limiting radial growth in L.olgensis and its variation with elevation.The statistical characteristics of chronologies suggested that elevation is a determinant of tree growth patterns in the study area.Response function analysis of chronologies with climate factors indicated that climate–growth relationships changed with increasing elevation:tree growth at high elevation was strongly limited by June temperatures of the previous year,and as elevation decreases,the importance of temperature decreased;tree radial growth at mid-elevation was mainly controlled by precipitation towards the end of the growing season of the current year.Biomass chronologies reflected a stronger climatic signal than tree-ring width chronologies.Spatial correlation with gridded climate data revealed that our chronologies contained a strong regional temperature signal for northeast China.Trees growing below timberline appeared to be more sensitive to climate,thus optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline.Our study objective was to provide information for more accurate prediction of the growth response of L.olgensis to future climate change on the eastern slope of the Changbai Mountains,and to provide information for future climate reconstructions using this tree species in humid and semi humid regions. 展开更多
关键词 Tree-ring width Dendrochronology Changbai Mountains Elevation gradient timberline Larix olgensis
下载PDF
Characterizing the Mass Elevation Effect across the Tibetan Plateau 被引量:3
8
作者 HAN Fang ZHANG Bai-ping +3 位作者 ZHAO Fang WAN Li TAN Jing LLANG Tian 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2651-2665,共15页
It is over 110 years since the term Mass Elevation Effect(MEE) was proposed by A. D. Quervain in 1904. The quantitative study of MEE has been explored in the Tibetan Plateau in recent years; however, the spatial distr... It is over 110 years since the term Mass Elevation Effect(MEE) was proposed by A. D. Quervain in 1904. The quantitative study of MEE has been explored in the Tibetan Plateau in recent years; however, the spatial distribution of MEE and its impact on the ecological pattern of the plateau are seldom known. In this study, we used a new method to estimate MEE in different regions of the plateau, and, then analyzed the distribution pattern of MEE, and the relationships among MEE, climate, and the altitudinal distribution of timberlines and snowlines in the Plateau. The main results are as follows:(1) The spatial distribution of MEE in the Tibetan Plateau roughly takes on an eccentric ellipse in northwestsoutheast trend. The Chang Tang Plateau and the middle part of the Kunlun Mountains are the core area of MEE, where occurs the highest MEE of above 11℃; and MEE tends to decreases from this core area northwestward, northeastward and southward;(2) The distance away from the core zone of the plateau is also a very important factor for MEE magnitude, because MEE is obviously higher in the interior than in the exterior of the plateau even with similar mountain base elevation(MBE).(3) The impacts of MEE on the altitudinal distribution of timberlines and snowlines are similar, i.e., the higher the MEE, the higher timberlines and snowlines. The highest timberline(4600–4800 m) appears in the lakes and basins north of the Himalayas and in the upper and middle reach valleys of the Yarlung Zangbo River, where the estimated MEE is 10.2822℃–10.6904℃. The highest snowline(6000–6200 m) occurs in the southwest of the Chang Tang Plateau, where the estimated MEE is 11.2059°C–11.5488℃. 展开更多
关键词 MASS ELEVATION Effect (MEE) Distribution Pattern timberline SNOWLINE TIBETAN PLATEAU
下载PDF
Detecting treeline dynamics in response to climate warming using forest stand maps and Landsat data in a temperate forest 被引量:1
9
作者 Maliheh Arekhi Ahmet Yesil +1 位作者 Ulas Yunus Ozkan Fusun Balik Sanli 《Forest Ecosystems》 SCIE CSCD 2018年第3期311-324,共14页
Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in ... Background: Treeline dynamics have inevitable impacts on the forest treeline structure and composition. The present research sought to estimate treeline movement and structural shifts in response to recent warming in Cehennemdere, Turkey. After implementing an atmospheric correction, the geo-shifting of images was performed to match images together for a per pixel trend analysis. We developed a new approach based on the NDVI, LST(land surface temperature) data, air temperature data, and forest stand maps for a 43-year period. The forest treeline border was mapped on the forest stand maps for 1970, 1992, 2002, and 2013 to identify shifts in the treeline altitudes, and then profile statistics were calculated for each period. Twenty sample plots(10 × 10 pixels) were selected to estimatethe NDVI and LST shifts across the forest timberline using per-pixel trend analysis and non-parametric Spearman’s correlation analysis. In addition, the spatial and temporal shifts in treeline tree species were computed within the selected plots for four time periods on the forest stand maps to determine the pioneer tree species.Results: A statistically significant increasing trend in all climate variables was observed, with the highest slopein the monthly average mean July temperature(tau = 0.62, ρ < 0.00). The resultant forest stand maps showed a geographical expansion of the treeline in both the highest altitudes(22 m–45 m) and the lowest altitudes(20 m–105 m) from 1970 to 2013. The per pixel trend analysis indicated an increasing trend in the NDVI and LST values within the selected plots. Moreover, increases in the LST were highly correlated with increases in the NDVIbetween 1984 and 2017(r = 0.75, ρ < 0.05). Cedrus libani and Juniperus communis app. were two pioneer tree species that expanded and grew consistently on open lands, primarily on rocks and soil-covered areas, from 1970 to 2013.Conclusion: The present study il ustrated that forest treeline dynamics and treeline structural changes can be detected using two data sources. Additionally, the results will have a significant contribution to and implication for treeline movement studies and forest landscape change investigations attempting to project climate change impacts on tree species in response to climate warming. The results will assist forest managers in establishing some developmentaladaptation strategies for forest treeline ecotones. 展开更多
关键词 NDVI Geoshift LST timberline MANN-KENDALL LANDSAT Climate warming
下载PDF
Tree clusters migration into alpine tundra,Siberia
10
作者 KHARUK Viacheslav I. PETROV II'ya A. +3 位作者 IM Sergei T. GOLYUKOV Alexey S. DVINSKAYA Maria L. SHUSHPANOV Alexander S. 《Journal of Mountain Science》 SCIE CSCD 2022年第12期3426-3440,共15页
We hypothesize that in mountain windy habitat trees formed clusters(hedges)as adaptive structures for seedlings’rooting,survival,and tress’upslope migration.We studied hedges formed by Siberian pine(Pinus sibirica d... We hypothesize that in mountain windy habitat trees formed clusters(hedges)as adaptive structures for seedlings’rooting,survival,and tress’upslope migration.We studied hedges formed by Siberian pine(Pinus sibirica du Tour)and larch(Larix sibirica Ledeb.)within the treeline ecotone in southern Siberian Mountains,investigated hedges formation,evolution,habitat amelioration,and analyzed tree’s growth index(GI)dependence on the eco-climate variables(air temperature,precipitation,soil moisture,wind speed)and relief features(elevation,aspect,slope steepness,and terrain curvature).We conducted a ground survey,measured biometrical parameters of trees and hedges,determined species composition and tree physiognomy,soil types and nutrient contents,and sampled wood cores and applied dendrochronology for trees’GI analysis.With high-resolution satellite scenes for hedge detection and upslope migration,we found that winter winds and soil moisture are the main constraints of trees’settlement and growth.Hedge formation always links with wind-sheltered microtopography features(boulders,local depressions or felled trees).Once the first tree is established,a positive feedback is aroused that facilitates seedling rooting and in-hedge habitat amelioration.Trees form a streamlined dense“common crown”that mitigates adverse winter wind influence.Hedges always orient along the prevailing winds,and trees’uphill migration occurs by seedlings establishment within the leeward hedge side.Hedge growth facilitates soil formation and fertilization.The concentration of nutrients(K,P,N and S)within hedges exceeds the background by 1.5-5.5 times.Hedge extension leads to increased snow accumulation that mitigates the influence of desiccation and snow abrasion and mitigates seasonal water stress.In the extremely harsh windy habitat,inhedge trees present in mat,prostrate or krummholz forms.With warming,tree stems and even twigs turn upright.Notably that GI dependence on the wind speed is insignificant until prostrated trees get turning upright.Since that,the negative correlation between GI and wind speed is arisen with subsequent decrease since hedges form streamlined crown.Hedge growth also leads to a“phytofield”formation(i.e.,grasses,lichen,moss and small bushes growth)around the hedges that,in its turn,encourages seedling rooting which is about triple more efficient than outside the phytofield.Larch,in comparison with Siberian pine,is less often formed hedges.GI of both species is stimulated by warmer air temperature in the beginning of the growth season.Meanwhile,larch GI has stronger response to elevated temperatures and less dependent on soil moisture.This indicates larch is a potential substitute of Siberian pine in a warmer and dryer climate.Hedges in warming climate evolve into closed stands due to both in-hedge tree growth and filling gaps between hedges by different tree species. 展开更多
关键词 TREELINE timberline HEDGES Tree migration Siberian pine LARCH Tree growth Siberian mountain forests Wind stress Moisture stress
下载PDF
Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region 被引量:11
11
作者 Li-Xin Lv Qi-Bin Zhang 《Journal of Plant Ecology》 SCIE 2012年第2期147-156,共10页
Aims Forest growth and recruitment and their relationships to climate are complex.The aims of our study are(i)to examine the patterns in tree radial growth and recruitment along an altitudinal gradient in Mt.Everest r... Aims Forest growth and recruitment and their relationships to climate are complex.The aims of our study are(i)to examine the patterns in tree radial growth and recruitment along an altitudinal gradient in Mt.Everest region and(ii)to identify the climatic factors that are responsible to the observed patterns in tree growth and recruitment.Methods Four plots,each 30360 m in size,were established from the lower to upper limits of the eastern Himalayan fir forest in Dingjie County of the Mt.Everest Nature Reserve,China.Dendrochronological techniques were applied to obtain information about the radial growth and age of the trees in the plots.Correlation analysis was used to identify the relationships between radial growth and recruitment of trees and climatic variables,i.e.monthly mean temperature and Palmer Drought Severity Index(PDSI).The population age structure was analyzed to investigate the recruitment history.Important Findings The timberline plot was characterized by significant tree recruitments in the recent three decades and sporadic recruitments in earlier periods.The other three plots showed recruitment pulses during 1880–1910 in Plot 3700 m,during 1870–80 and 1920–30 in Plot 3520 m and during 1900–40 in Plot 3410 m.The recruitment of fir trees in the timberline was sensitive to summer(June–September)temperatures,but it was mainly controlled by episodic disturbances in lower altitudes.Fir radial growth in the upper two plots was positively correlated with previous winter and current August temperature.Fir radial growth at the two lower plots was positively correlated with PDSI from previous September to current September. 展开更多
关键词 tree rings tree recruitment age structure DISTURBANCE timberline dynamics
原文传递
Upper range limit establishment after wildfire of an obligateseeding montane forest tree fails to keep pace with 20th century warming
12
作者 John W.Morgan James D.Vincent James S.Camac 《Journal of Plant Ecology》 SCIE CSCD 2018年第2期200-207,共8页
Aims How species respond to climate change at local scales will depend on how edaphic and biological characteristics interact with species physiological limits and traits such as dispersal.Obligate seeders,those speci... Aims How species respond to climate change at local scales will depend on how edaphic and biological characteristics interact with species physiological limits and traits such as dispersal.Obligate seeders,those species that depend on fire for recruitment,have few and epi-sodic opportunities to track a changing climate envelope.in such cases,long-distance seed dispersal will be necessary to take advan-tage of rare recruitment opportunities.We examine recruitment patterns and seedling growth below,at and above the timberline of an obligate-seeding Australian montane forest tree(Eucalyptus delegatensis)after stand-replacing fire,and place these changes in the context of regional warming.Methods We use two methods to detect whether E.delegatensis can estab-lish and persist above the timberline after stand-replacing wildfire in montane forests in south-east Australia.First,we examine estab-lishment patterns by using belt transects at six sites to quantify how changes in post-fire recruit density with increasing distance above the timberline seven years post-fire.Second,to determine whether dispersal or physiological constraints determine post-fire establish-ment patterns,we transplanted seedlings and saplings into bare ground above(100 m elevation),at,and below(50 m elevation)timberline 18-months after fire.We monitored seedling growth and survival for one growing season.Important Findings There was minimal upslope migration of the species after fire with most saplings observed near seed-bearing timberline trees,with only occasional outpost saplings.Transplanted seedlings and saplings sur-vived equally well across one growing season when planted above existing timberlines,relative to saplings at or below the timberline.Seedling and sapling growth rates also did not differ across these location,although seedlings grew at much faster rates than saplings.These findings suggest that upslope growing season conditions are unlikely to limit initial range expansion of trees after fire.instead,it is more likely that seed traits governing dispersal modulate responses to environmental gradients,and global change more generally. 展开更多
关键词 climate change dispersal limitation growth rates regeneration niche timberline
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部