According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. Th...According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.展开更多
The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip....The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip.Employing the special clock resources and large-scale phase locked logic(PLL)in field-programmable gate arrays(FPGA),a timing-driven approach is proposed,using which all timing signals including reset gate,horizontal and vertical timing signals,are implemented in one chip.This not only reduces printed circuit board(PCB)space,but also enhances the portability of the system.By studying and calculating CCD parameters thoroughly,load capacity and power consumption,package,etc,are compared between various candidates chips,and detailed comparison results are also listed in table.Experimental results show that clock generator and driving circuit satisfy the requirements of high speed TDI CCD.展开更多
Single event latch-up (SEL) is a significant issue for electronics design in space application, which would cause large currents in electronic devices, and may lead to burning out of devices. A new monitoring circuit ...Single event latch-up (SEL) is a significant issue for electronics design in space application, which would cause large currents in electronic devices, and may lead to burning out of devices. A new monitoring circuit based on current-comparing method is designed to protect the electronics away from SEL’s damage in radiation environment. The response time of protection circuit has been analyzed. The signal simulation results indicated that the operating time of the SEL protection circuit is dependent on the action time of current comparator and system application recovery time. The function of the monitoring circuit protection device away from SEL’s damage has validated through experiment at last.展开更多
The advancement in CMOS technology has surpassed the progress in computer aided design tools, creating an avenue for new design optimization flows. This paper presents a design level transistor sizing based timing opt...The advancement in CMOS technology has surpassed the progress in computer aided design tools, creating an avenue for new design optimization flows. This paper presents a design level transistor sizing based timing optimization algorithms for mixed-static-dynamic CMOS logic designs. This optimization algorithm performs timing optimization through partitioning a design into static and dynamic circuits based on timing critical paths, and is further extended through a process variation aware circuit level timing optimization algorithm for dynamic CMOS circuits. Implemented on a 64-b adder and ISCAS benchmark circuits for mixed-static-dynamic CMOS, the design level optimization algorithm demonstrated a critical path delay improvement of over 52% in comparison with static CMOS implementation by state-of-the-art commercial optimization tools.展开更多
The model of lumped element circuit ignores the finite time of signals to propagate around a circuit. However, using modern oscilloscope, the time of nanoseconds in a circuit can be measured. Then the speed of alterna...The model of lumped element circuit ignores the finite time of signals to propagate around a circuit. However, using modern oscilloscope, the time of nanoseconds in a circuit can be measured. Then the speed of alternating electricity can be obtained in a RL circuit. A typical RL circuit is formed by a power source, wire, resistance and inductance. The basic formula is: U(t)=I(t)R+LdI(t)/dt. It can be derived from the Ohm’s law and Kirchhoff laws. Based on our experimental results, this paper has discussed the new explanation of this equation in a RL circuit. As a result, the speed of alternating electricity is greater than light in a special RL circuit. The model of lumped element circuit can be improved when considering the finite time of signals.展开更多
This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory an...This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.展开更多
The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timi...The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timing analysis, but the best method found till the moment is the Static Timing Analysis (STA). It is considered the best solution because of its accuracy and fast run time. Transistor level models are mandatory required for the best estimating methods, since these take into consideration all analysis scenarios to overcome problems of multiple-input switching, false paths and high stacks that are found in classic CMOS gates. In this paper, transistor level graph model is proposed to describe the behavior of CMOS circuits under predictive Nanotechnology SPICE parameters. This model represents the transistor in the CMOS circuit as nodes in the graph regardless of its positions in the gates to accurately estimating the timing analysis rather than inaccurate estimating which caused by the false paths at the gate level. Accurate static timing analysis is estimated using the model proposed in this paper. Building on the proposed model and the graph theory concepts, new algorithms are proposed and simulated to compute transistor timing analysis using RC model. Simulation results show the validity of the proposed graph model and its algorithms by using predictive Nano-Technology SPICE parameters for the tested technology. An important and effective extension has been achieved in this paper for a one that was published in international conference.展开更多
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor functio...Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.展开更多
Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analy...Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.展开更多
文摘According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.
基金National High Technology Research and Development Program of China(863 Program)(No.2009AA7010102)
文摘The time delay integration charge coupled device(TDI CCD)is the key component in remote sensing systems.The paper analyzes the structure and the working principles of the device according to a customized TDI CCD chip.Employing the special clock resources and large-scale phase locked logic(PLL)in field-programmable gate arrays(FPGA),a timing-driven approach is proposed,using which all timing signals including reset gate,horizontal and vertical timing signals,are implemented in one chip.This not only reduces printed circuit board(PCB)space,but also enhances the portability of the system.By studying and calculating CCD parameters thoroughly,load capacity and power consumption,package,etc,are compared between various candidates chips,and detailed comparison results are also listed in table.Experimental results show that clock generator and driving circuit satisfy the requirements of high speed TDI CCD.
文摘Single event latch-up (SEL) is a significant issue for electronics design in space application, which would cause large currents in electronic devices, and may lead to burning out of devices. A new monitoring circuit based on current-comparing method is designed to protect the electronics away from SEL’s damage in radiation environment. The response time of protection circuit has been analyzed. The signal simulation results indicated that the operating time of the SEL protection circuit is dependent on the action time of current comparator and system application recovery time. The function of the monitoring circuit protection device away from SEL’s damage has validated through experiment at last.
文摘The advancement in CMOS technology has surpassed the progress in computer aided design tools, creating an avenue for new design optimization flows. This paper presents a design level transistor sizing based timing optimization algorithms for mixed-static-dynamic CMOS logic designs. This optimization algorithm performs timing optimization through partitioning a design into static and dynamic circuits based on timing critical paths, and is further extended through a process variation aware circuit level timing optimization algorithm for dynamic CMOS circuits. Implemented on a 64-b adder and ISCAS benchmark circuits for mixed-static-dynamic CMOS, the design level optimization algorithm demonstrated a critical path delay improvement of over 52% in comparison with static CMOS implementation by state-of-the-art commercial optimization tools.
文摘The model of lumped element circuit ignores the finite time of signals to propagate around a circuit. However, using modern oscilloscope, the time of nanoseconds in a circuit can be measured. Then the speed of alternating electricity can be obtained in a RL circuit. A typical RL circuit is formed by a power source, wire, resistance and inductance. The basic formula is: U(t)=I(t)R+LdI(t)/dt. It can be derived from the Ohm’s law and Kirchhoff laws. Based on our experimental results, this paper has discussed the new explanation of this equation in a RL circuit. As a result, the speed of alternating electricity is greater than light in a special RL circuit. The model of lumped element circuit can be improved when considering the finite time of signals.
基金supported by the National Meg-Science Project of the Chinese Government
文摘This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.
文摘The development and the revolution of nanotechnology require more and effective methods to accurately estimating the timing analysis for any CMOS transistor level circuit. Many researches attempted to resolve the timing analysis, but the best method found till the moment is the Static Timing Analysis (STA). It is considered the best solution because of its accuracy and fast run time. Transistor level models are mandatory required for the best estimating methods, since these take into consideration all analysis scenarios to overcome problems of multiple-input switching, false paths and high stacks that are found in classic CMOS gates. In this paper, transistor level graph model is proposed to describe the behavior of CMOS circuits under predictive Nanotechnology SPICE parameters. This model represents the transistor in the CMOS circuit as nodes in the graph regardless of its positions in the gates to accurately estimating the timing analysis rather than inaccurate estimating which caused by the false paths at the gate level. Accurate static timing analysis is estimated using the model proposed in this paper. Building on the proposed model and the graph theory concepts, new algorithms are proposed and simulated to compute transistor timing analysis using RC model. Simulation results show the validity of the proposed graph model and its algorithms by using predictive Nano-Technology SPICE parameters for the tested technology. An important and effective extension has been achieved in this paper for a one that was published in international conference.
基金supported by the National Natural Science Foundation of China,No.90307013,90707005,61534003the Science&Technology Pillar Program of Jiangsu Province in China,No.BE2013706
文摘Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.
基金This work was financially supported by the National Key Science-Technology Project during the Tenth Five-Year-Plan period of China under Grant No.2001BA609A and No.2004BA615A.
文摘Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.