This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
Little is known about how the assessment modality,i.e.,computer-based(CB)and paper-based(PB)tests,affects language teachers’scorings,perceptions,and preferences and,therefore,the validity and fairness of classroom wr...Little is known about how the assessment modality,i.e.,computer-based(CB)and paper-based(PB)tests,affects language teachers’scorings,perceptions,and preferences and,therefore,the validity and fairness of classroom writing assessments.The present mixed-methods study used Shaw and Weir’s(2007)sociocognitive writing test validation framework to examine the scoring and consequential validity evidence of CB and PB writing tests in EFL classroom assessment in higher education.Original handwritten and word-processed texts of 38 EFL university students were transcribed to their opposite format and assessed by three language lecturers(N=456 texts,152 per teacher)to examine the scoring validity of CB and PB tests.The teachers’perceptions of text quality and preferences for assessment modality accounted for the consequential validity evidence of both tests.Findings revealed that the assessment modality impacted teachers’scorings,perceptions,and preferences.The teachers awarded higher scores to original and transcribed handwritten texts,particularly text organization and language use.The teachers’perceptions of text quality differed from their ratings,and physical,psychological,and experiential characteristics influenced their preferences for assessment modality.The results have implications for the validity and fairness of CB and PB writing tests and teachers’assessment practices.展开更多
BACKGROUND Endofaster is an innovative technology that can be combined with upper gastrointestinal endoscopy(UGE)to perform gastric juice analysis and real-time detection of Helicobacter pylori(H.pylori).AIM To assess...BACKGROUND Endofaster is an innovative technology that can be combined with upper gastrointestinal endoscopy(UGE)to perform gastric juice analysis and real-time detection of Helicobacter pylori(H.pylori).AIM To assess the diagnostic performance of this technology and its impact on the management of H.pylori in the real-life clinical setting.METHODS Patients undergoing routine UGE were prospectively recruited.Biopsies were taken to assess gastric histology according to the updated Sydney system and for rapid urease test(RUT).Gastric juice sampling and analysis was performed using the Endofaster,and the diagnosis of H.pylori was based on real-time ammonium measurements.Histological detection of H.pylori served as the diagnostic gold standard for comparing Endofaster-based H.pylori diagnosis with RUT-based H.pylori detection.RESULTS A total of 198 patients were prospectively enrolled in an H.pylori diagnostic study by Endofasterbased gastric juice analysis(EGJA)during the UGE.Biopsies for RUT and histological assessment were performed on 161 patients(82 men and 79 women,mean age 54.8±19.2 years).H.pylori infection was detected by histology in 47(29.2%)patients.Overall,the sensitivity,specificity,accuracy,positive predictive value,and negative predictive value(NPV)for H.pylori diagnosis by EGJA were 91.5%,93.0%,92.6%,84.3%,and 96.4%,respectively.In patients on treatment with proton pump inhibitors,diagnostic sensitivity was reduced by 27.3%,while specificity and NPV were unaffected.EGJA and RUT were comparable in diagnostic performance and highly concordant in H.pylori detection(κ-value=0.85).CONCLUSION Endofaster allows for rapid and highly accurate detection of H.pylori during gastroscopy.This may guide taking additional biopsies for antibiotic susceptibility testing during the same procedure and then selecting an individually tailored eradication regimen.展开更多
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr...It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信...目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。展开更多
Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi...Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
文摘Little is known about how the assessment modality,i.e.,computer-based(CB)and paper-based(PB)tests,affects language teachers’scorings,perceptions,and preferences and,therefore,the validity and fairness of classroom writing assessments.The present mixed-methods study used Shaw and Weir’s(2007)sociocognitive writing test validation framework to examine the scoring and consequential validity evidence of CB and PB writing tests in EFL classroom assessment in higher education.Original handwritten and word-processed texts of 38 EFL university students were transcribed to their opposite format and assessed by three language lecturers(N=456 texts,152 per teacher)to examine the scoring validity of CB and PB tests.The teachers’perceptions of text quality and preferences for assessment modality accounted for the consequential validity evidence of both tests.Findings revealed that the assessment modality impacted teachers’scorings,perceptions,and preferences.The teachers awarded higher scores to original and transcribed handwritten texts,particularly text organization and language use.The teachers’perceptions of text quality differed from their ratings,and physical,psychological,and experiential characteristics influenced their preferences for assessment modality.The results have implications for the validity and fairness of CB and PB writing tests and teachers’assessment practices.
基金Supported by the Deutsches Zentrum für Infektionsforschung,Partner Site Munich,Germany,No.TTU 06.715_00the Bavarian Ministry of Science and the Arts within the framework of the Bavarian Research Network“New Strategies Against Multi-Resistant Pathogens by Means of Digital Networking–bayresq.net”.
文摘BACKGROUND Endofaster is an innovative technology that can be combined with upper gastrointestinal endoscopy(UGE)to perform gastric juice analysis and real-time detection of Helicobacter pylori(H.pylori).AIM To assess the diagnostic performance of this technology and its impact on the management of H.pylori in the real-life clinical setting.METHODS Patients undergoing routine UGE were prospectively recruited.Biopsies were taken to assess gastric histology according to the updated Sydney system and for rapid urease test(RUT).Gastric juice sampling and analysis was performed using the Endofaster,and the diagnosis of H.pylori was based on real-time ammonium measurements.Histological detection of H.pylori served as the diagnostic gold standard for comparing Endofaster-based H.pylori diagnosis with RUT-based H.pylori detection.RESULTS A total of 198 patients were prospectively enrolled in an H.pylori diagnostic study by Endofasterbased gastric juice analysis(EGJA)during the UGE.Biopsies for RUT and histological assessment were performed on 161 patients(82 men and 79 women,mean age 54.8±19.2 years).H.pylori infection was detected by histology in 47(29.2%)patients.Overall,the sensitivity,specificity,accuracy,positive predictive value,and negative predictive value(NPV)for H.pylori diagnosis by EGJA were 91.5%,93.0%,92.6%,84.3%,and 96.4%,respectively.In patients on treatment with proton pump inhibitors,diagnostic sensitivity was reduced by 27.3%,while specificity and NPV were unaffected.EGJA and RUT were comparable in diagnostic performance and highly concordant in H.pylori detection(κ-value=0.85).CONCLUSION Endofaster allows for rapid and highly accurate detection of H.pylori during gastroscopy.This may guide taking additional biopsies for antibiotic susceptibility testing during the same procedure and then selecting an individually tailored eradication regimen.
基金support from Shenzhen Municipal Development and Reform Commission(Grant Number:SDRC[2016]172)Shenzhen Science and Technology Program(Grant No.KQTD20170810150821146)Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School,and Shanghai Shun Feng Machinery Co.,Ltd.
文摘It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
文摘目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。
文摘Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.