Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firin...Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.展开更多
Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection...Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.展开更多
With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to...With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to the grid, the paper first establishes the impact characteristic indexes, and then analyzes the regularity of wind power time series in different spatial and temporal scales. At last, according to the analysis results, this paper assesses the impact of time-series characteristics of wind power on power grid, such as the frequency regulation, peak load regulation, which can provide the reference for wind power optimal dispatching of Jilin Power Grid.展开更多
Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthq...Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthquake focus mechanism, wave traveling path and its attenuation characteristics in focal area or near field. In order to test its validity, we select the natural earthquakes and explosion or collapse events whose focus mechanisms vary obviously,and some natural earthquakes located at the same site or in a very small area. The study indicates that the time frequency energy attenuation factors of the natural earthquakes are obviously different with that of explosion or collapse events, and the change of the time frequency energy attenuation factors is relatively stable for the earthquakes under the normal seismicity background. Using the above mentioned method, it is expected to offer a useful criterion for strong earthquake prediction by continuous earthquake observation.展开更多
Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of rai...Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.展开更多
为提高电磁辐射监测方法的准确性,采用单轴压缩实验方法,分析煤体受载破坏过程电磁辐射时域、频域及波形变化特征,并对其变化机理进行探究.研究结果表明:煤体单轴压缩过程中电磁辐射脉冲数、能量值、波形主频及幅值均与所受应力近似呈...为提高电磁辐射监测方法的准确性,采用单轴压缩实验方法,分析煤体受载破坏过程电磁辐射时域、频域及波形变化特征,并对其变化机理进行探究.研究结果表明:煤体单轴压缩过程中电磁辐射脉冲数、能量值、波形主频及幅值均与所受应力近似呈正相关关系,煤体受载破裂过程中,电磁辐射的主频与幅值不断增大,并在煤体失稳时达到最大,电磁辐射脉冲数、能量值、主频或幅值的急剧增加可以作为煤体失稳的前兆特征;煤体电磁辐射的频带为1 Hz^500 k Hz,煤体失稳破裂时主频达到最大值202 k Hz,随着加载的进行,频带内各频率幅值分布逐渐集中于主频附近;煤体破裂过程电磁辐射特征变化与外部载荷输入的机械能有关.展开更多
基金jointly sponsored the Special Fund for Earthquake Scientific Research of China Earthquake Administration(2015419015)the National Natural Sciences Foundation of China(41474071)
文摘Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.
基金The authors gratefully acknowledge the support of the National Nature Science Foundation of China(No.11774378)。
文摘Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.
文摘With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to the grid, the paper first establishes the impact characteristic indexes, and then analyzes the regularity of wind power time series in different spatial and temporal scales. At last, according to the analysis results, this paper assesses the impact of time-series characteristics of wind power on power grid, such as the frequency regulation, peak load regulation, which can provide the reference for wind power optimal dispatching of Jilin Power Grid.
文摘Based on the Gauss linear frequency modulated wavelet transform, a new characteristic index is presented, namely time frequency energy attenuation factor which can reflect the difference features of waveform in earthquake focus mechanism, wave traveling path and its attenuation characteristics in focal area or near field. In order to test its validity, we select the natural earthquakes and explosion or collapse events whose focus mechanisms vary obviously,and some natural earthquakes located at the same site or in a very small area. The study indicates that the time frequency energy attenuation factors of the natural earthquakes are obviously different with that of explosion or collapse events, and the change of the time frequency energy attenuation factors is relatively stable for the earthquakes under the normal seismicity background. Using the above mentioned method, it is expected to offer a useful criterion for strong earthquake prediction by continuous earthquake observation.
基金funded by the National Key R&Dprogram of China[Grant No.2022YFB2603302]the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd[Grant No.K2022G015]the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ305].
文摘Purpose–In this paper,a high-frequency radar test system was used to collect the data of clean ballast bed and fouled ballast bed of ballasted tracks,respectively,for a quantitative evaluation of the condition of railway ballast bed.Design/methodology/approach–Based on original radar signals,the time–frequency characteristics of radar signals were analyzed,five ballast bed condition characteristic indexes were proposed,including the frequency domain integral area,scanning area,number of intersections with the time axis,number of timedomain inflection points and amplitude envelope obtained by Hilbert transform,and the effectiveness and sensitivity of the indexes were analyzed.Findings–The thickness of ballast bed tested at the sleep bottom by high-frequency radar is up to 55 cm,which meets the requirements of ballast bed detection.Compared with clean ballast bed,the values of the five indexes of fouled ballast bed are larger,and the five indexes could effectively show the condition of the ballast bed.The computational efficiency of amplitude envelope obtained by Hilbert transform is 140 s$km1,and the computational efficiency of other indexes is 5 s$km1.The amplitude envelopes obtained by Hilbert transform in the subgrade sections and tunnel sections are the most sensitive,followed by scanning area.The number of intersections with the time axis in the bridge sections was the most sensitive,followed by the scanning area.The scanning area can adapt to different substructures such as subgrade,bridges and tunnels,with high comprehensive sensitivity.Originality/value–The research can provide appropriate characteristic indexes from the high-frequency radar original signal to quantitatively evaluate ballast bed condition under different substructures.
文摘依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V.
文摘为提高电磁辐射监测方法的准确性,采用单轴压缩实验方法,分析煤体受载破坏过程电磁辐射时域、频域及波形变化特征,并对其变化机理进行探究.研究结果表明:煤体单轴压缩过程中电磁辐射脉冲数、能量值、波形主频及幅值均与所受应力近似呈正相关关系,煤体受载破裂过程中,电磁辐射的主频与幅值不断增大,并在煤体失稳时达到最大,电磁辐射脉冲数、能量值、主频或幅值的急剧增加可以作为煤体失稳的前兆特征;煤体电磁辐射的频带为1 Hz^500 k Hz,煤体失稳破裂时主频达到最大值202 k Hz,随着加载的进行,频带内各频率幅值分布逐渐集中于主频附近;煤体破裂过程电磁辐射特征变化与外部载荷输入的机械能有关.