Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equ...Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.展开更多
In this paper we study the self-similar solution to a class of nonlinear integro-differential equations which correspond to fractional order time derivative and interpolate nonlinear heat and wave equation. Using the ...In this paper we study the self-similar solution to a class of nonlinear integro-differential equations which correspond to fractional order time derivative and interpolate nonlinear heat and wave equation. Using the space-time estimates which were established by Hirata and Miao in [1] we prove the global existence of self-similar solution of Cauchy problem for the nonlinear integro-differential equation in C*([0,∞];B^8pp,∞(R^n).展开更多
This paper considers a novel distributed order time fractional dual-phase-lag model to analyze the anomalous diffusion in a comb structure,which has a widespread application in medicine and biology.The newly proposed ...This paper considers a novel distributed order time fractional dual-phase-lag model to analyze the anomalous diffusion in a comb structure,which has a widespread application in medicine and biology.The newly proposed constitution model is a generalization of the dual-phase-lag model,in which a spectrum of the time fractional derivatives with the memory characteristic governed by the weight coefficient is considered and the formulated governing equation contains both the diffusion and wave characteristics.With the L1-formula to discrete the time Caputo fractional derivatives,the finite difference method is used to discretize the model and the related numerical results are plotted graphically.By adding a source term,an exact solution is defined to verify the correctness of the numerical scheme and the convergence order of the error in spatial direction is presented.Finally,the dynamic characteristics of the particle distributions and the effects of involved parameters on the total number of particles in the x-direction are analyzed in detail.展开更多
The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of...The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.展开更多
基金the National Natural Science Foundation of China(Nos.12172197,12171284,12120101001,and 11672163)the Fundamental Research Funds for the Central Universities(No.2019ZRJC002)。
文摘Fractional calculus has been widely used to study the flow of viscoelastic fluids recently,and fractional differential equations have attracted a lot of attention.However,the research has shown that the fractional equation with constant order operators has certain limitations in characterizing some physical phenomena.In this paper,the viscoelastic fluid flow of generalized Maxwell fluids in an infinite straight pipe driven by a periodic pressure gradient is investigated systematically.Consider the complexity of the material structure and multi-scale effects in the viscoelastic fluid flow.The modified time fractional Maxwell models and the corresponding governing equations with distributed/variable order time fractional derivatives are proposed.Based on the L1-approximation formula of Caputo fractional derivatives,the implicit finite difference schemes for the distributed/variable order time fractional governing equations are presented,and the numerical solutions are derived.In order to test the correctness and availability of numerical schemes,two numerical examples are established to give the exact solutions.The comparisons between the numerical solutions and the exact solutions have been made,and their high consistency indicates that the present numerical methods are effective.Then,this paper analyzes the velocity distributions of the distributed/variable order fractional Maxwell governing equations under specific conditions,and discusses the effects of the weight coefficient(α)in distributed order time fractional derivatives,the orderα(r,t)in variable fractional order derivatives,the relaxation timeλ,and the frequencyωof the periodic pressure gradient on the fluid flow velocity.Finally,the flow rates of the distributed/variable order fractional Maxwell governing equations are also studied.
基金NSF of China,Special Funds for Major State Basic Research Projects of ChinaNSF of Chinese Academy of Engineering Physics
文摘In this paper we study the self-similar solution to a class of nonlinear integro-differential equations which correspond to fractional order time derivative and interpolate nonlinear heat and wave equation. Using the space-time estimates which were established by Hirata and Miao in [1] we prove the global existence of self-similar solution of Cauchy problem for the nonlinear integro-differential equation in C*([0,∞];B^8pp,∞(R^n).
基金The work is supported by the Project funded by the National Natural ScienceFoundation of China(No.11801029)Fundamental Research Funds for the Cen-tral Universities(FRF-TP-20-013A2)author Feng wishes to acknowledge thesupport from the National Natural Science Foundation of China(NNSFC)(No.11801060).
文摘This paper considers a novel distributed order time fractional dual-phase-lag model to analyze the anomalous diffusion in a comb structure,which has a widespread application in medicine and biology.The newly proposed constitution model is a generalization of the dual-phase-lag model,in which a spectrum of the time fractional derivatives with the memory characteristic governed by the weight coefficient is considered and the formulated governing equation contains both the diffusion and wave characteristics.With the L1-formula to discrete the time Caputo fractional derivatives,the finite difference method is used to discretize the model and the related numerical results are plotted graphically.By adding a source term,an exact solution is defined to verify the correctness of the numerical scheme and the convergence order of the error in spatial direction is presented.Finally,the dynamic characteristics of the particle distributions and the effects of involved parameters on the total number of particles in the x-direction are analyzed in detail.
文摘The current work is an extension of the nonlocal elasticity theory to fractional order thermo-elasticity in semiconducting nanostructure medium with voids.The analysis is made on the reflection phenomena in context of three-phase-lag thermo-elastic model.It is observed that,four-coupled longitudinal waves and an independent shear vertical wave exist in the medium which is dispersive in nature.It is seen that longitudinal waves are damped,and shear wave is un-damped when angular frequency is less than the cut-off frequency.The voids,thermal and non-local parameter affect the dilatational waves whereas shear wave is only depending upon non-local parameter.It is found that reflection coefficients are affected by nonlocal and fractional order parameters.Reflection coefficients are calculated analytically and computed numerically for a material,silicon and discussed graphically in details.The results for local(classical)theory are obtained as a special case.The study may be useful in semiconductor nanostructure,geology and seismology in addition to semiconductor nanostructure devices.