In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati...In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.展开更多
Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localizati...Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
针对已有的算法在基于到达时间差(time difference of arrival,TDOA)测量方案中存在的搜索能力不均衡,导致三维定位区域局部存在定位精度低甚至求解失败的问题,提出了一种基于改进探路者优化算法(pathfinder algorithm,PFA)的TDOA定位算...针对已有的算法在基于到达时间差(time difference of arrival,TDOA)测量方案中存在的搜索能力不均衡,导致三维定位区域局部存在定位精度低甚至求解失败的问题,提出了一种基于改进探路者优化算法(pathfinder algorithm,PFA)的TDOA定位算法,通过将自适应Levy飞行和改进后的PFA算法进行融合,增强了个体对定位区域复杂环境的适应性,解决算法早熟、易陷入局部最优等问题,提升了算法综合性能.通过仿真和实验,结果表明:与Taylor算法、LM算法相比,本文提出的算法(Levy-pathfinder algorithm,LPFA)可以提高定位精度;与PSO算法、PFA算法相比,LPFA算法可以在提高运算速度的同时得到更准确的定位结果.展开更多
For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve...For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.展开更多
The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA position...The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.展开更多
文摘In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.
基金National Natural Science Foundation of China(No.61227003)National Program on Key Basic Research Program(973Program)(No.2013CB311804)
文摘Aiming at the lower microseismic localization accuracy in underground shallow distributed burst point localization based on time difference of arriva(TDOA),this paper presents a method for microseismic localization based on group waves’ time difference information Firstly, extract the time difference corresponding to direct P wavers dominant frequency by utilizing its propagation characteristics. Secondly, construct TDOA model with non-prediction velocity and identify objective function of particle swarm optimization (PSO). Afterwards, construct the initial particle swarm by using time difference information Finally, search the localization results in optimal solution space. The results of experimental verification show that the microseismic localization method proposed in this paper effectively enhances the localization accuracy of microseismic explosion source with positioning error less than 50 cm, which can satisfy the localization requirements of shallow burst point and has definite value for engineering application in underground space positioning field.
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
基金supported by the National Natural Science Foundationof China(61201208)
文摘For the frequency difference of arrival (FDOA) esti-mation in passive location, this paper transforms the frequency difference estimation into the radial velocity difference estimation, which is difficult to achieve a high accuracy due to the mismatch between the sampling period and the pulse repetition interval. The proposed algorithm firstly estimates the point-in-time that each pulse arrives at two receivers accurately. Secondly two time of arrival (TOA) sequences are subtracted. And final y the radial ve-locity difference of a target relative to two stations with the least square method is estimated. This algorithm only needs accurate estimation of the time delay between pulses and is not influenced by parameters such as frequency and modulation mode. It avoids transmitting a large amount of data between two stations in real time. Simulation results corroborate that the performance is bet-ter than the arithmetic average of the Cramer-Rao lower bound (CRLB) for monopulse under suitable conditions.
基金supported by the National Natural Science Foundation of China (61502522)Equipment Pre-Research Field Fund(JZX7Y20190253036101)+1 种基金Equipment Pre-Research Ministry of Education Joint Fund (6141A02033703)Hubei Provincial Natural Scie nce Foundation (2019CFC897)。
文摘The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation.