期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
A New Multidimensional Time Series Forecasting Method Based on the EOF Iteration Scheme 被引量:3
1
作者 张邦林 刘洁 孙照渤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期243-247,共5页
In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments... In this paper a new .mnultidimensional time series forecasting scheme based on the empirical orthogonal function (EOF) stepwise iteration process is introduced. The scheme is tested in a series of forecast experiments of Nino3 SST anomalies and Tahiti-Darwin SO index. The results show that the scheme is feasible and ENSO predictable. 展开更多
关键词 SST A New Multidimensional time series forecasting Method Based on the EOF Iteration Scheme Nino EOF
下载PDF
Performance evaluation of series and parallel strategies for financial time series forecasting 被引量:3
2
作者 Mehdi Khashei Zahra Hajirahimi 《Financial Innovation》 2017年第1期357-380,共24页
Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attemp... Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting. 展开更多
关键词 series and parallel combination strategies Multilayer perceptrons Autoregressive integrated moving average Financial time series forecasting Stock markets
下载PDF
Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale 被引量:1
3
作者 Georgia Papacharalampous Hristos Tyralis +2 位作者 Ilias G.Pechlivanidis Salvatore Grimaldi Elena Volpi 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期79-99,共21页
Statistical analyses and descriptive characterizations are sometimes assumed to be offering information on time series forecastability.Despite the scientific interest suggested by such assumptions,the relationships be... Statistical analyses and descriptive characterizations are sometimes assumed to be offering information on time series forecastability.Despite the scientific interest suggested by such assumptions,the relationships between descriptive time series features(e.g.,temporal dependence,entropy,seasonality,trend and linearity features)and actual time series forecastability(quantified by issuing and assessing forecasts for the past)are scarcely studied and quantified in the literature.In this work,we aim to fill in this gap by investigating such relationships,and the way that they can be exploited for understanding hydroclimatic forecastability and its patterns.To this end,we follow a systematic framework bringing together a variety of–mostly new for hydrology–concepts and methods,including 57 descriptive features and nine seasonal time series forecasting methods(i.e.,one simple,five exponential smoothing,two state space and one automated autoregressive fractionally integrated moving average methods).We apply this framework to three global datasets originating from the larger Global Historical Climatology Network(GHCN)and Global Streamflow Indices and Metadata(GSIM)archives.As these datasets comprise over 13,000 monthly temperature,precipitation and river flow time series from several continents and hydroclimatic regimes,they allow us to provide trustable characterizations and interpretations of 12-month ahead hydroclimatic forecastability at the global scale.We first find that the exponential smoothing and state space methods for time series forecasting are rather equally efficient in identifying an upper limit of this forecastability in terms of Nash-Sutcliffe efficiency,while the simple method is shown to be mostly useful in identifying its lower limit.We then demonstrate that the assessed forecastability is strongly related to several descriptive features,including seasonality,entropy,(partial)autocorrelation,stability,(non)linearity,spikiness and heterogeneity features,among others.We further(i)show that,if such descriptive information is available for a monthly hydroclimatic time series,we can even foretell the quality of its future forecasts with a considerable degree of confidence,and(ii)rank the features according to their efficiency in explaining and foretelling forecastability.We believe that the obtained rankings are of key importance for understanding forecastability.Spatial forecastability patterns are also revealed through our experiments,with East Asia(Europe)being characterized by larger(smaller)monthly temperature time series forecastability and the Indian subcontinent(Australia)being characterized by larger(smaller)monthly precipitation time series forecastability,compared to other continental-scale regions,and less notable differences characterizing monthly river flow from continent to continent.A comprehensive interpretation of such patters through massive feature extraction and feature-based time series clustering is shown to be possible.Indeed,continental-scale regions characterized by different degrees of forecastability are also attributed to different clusters or mixtures of clusters(because of their essential differences in terms of descriptive features). 展开更多
关键词 Exponential smoothing PREDICTABILITY Statistical hydrology time series analysis time series clustering time series forecasting
下载PDF
Comparison of Missing Data Imputation Methods in Time Series Forecasting 被引量:1
4
作者 Hyun Ahn Kyunghee Sun Kwanghoon Pio Kim 《Computers, Materials & Continua》 SCIE EI 2022年第1期767-779,共13页
Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.I... Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.In this study,we evaluate and compare the effects of imputationmethods for estimating missing values in a time series.Our approach does not include a simulation to generate pseudo-missing data,but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom.In an experiment,therefore,several time series forecasting models are trained using different training datasets prepared using each imputation method.Subsequently,the performance of the imputation methods is evaluated by comparing the accuracy of the forecasting models.The results obtained from a total of four experimental cases show that the k-nearest neighbor technique is the most effective in reconstructing missing data and contributes positively to time series forecasting compared with other imputation methods. 展开更多
关键词 Missing data imputation method time series forecasting LSTM
下载PDF
Artificial Neural Networks for COVID-19 Time Series Forecasting
5
作者 Lorena Saliaj Eugenia Nissi 《Open Journal of Statistics》 2022年第2期277-290,共14页
Today, COVID-19 pandemic has become the greatest worldwide threat, as it spreads rapidly among individuals in most countries around the world. This study concerns the problem of daily prediction of new COVID-19 cases ... Today, COVID-19 pandemic has become the greatest worldwide threat, as it spreads rapidly among individuals in most countries around the world. This study concerns the problem of daily prediction of new COVID-19 cases in Italy, aiming to find the best predictive model for daily infection number in countries with a large number of confirmed cases. Finding the most accurate forecasting model would help allocate medical resources, handle the spread of the pandemic and get more prepared in terms of health care systems. We compare the forecasting performance of linear and nonlinear forecasting models using daily COVID-19 data for the period between 22 February 2020 and 10 January 2022. We discuss various forecasting approaches, including an Autoregressive Integrated Moving Average (ARIMA) model, a Nonlinear Autoregressive Neural Network (NARNN) model, a TBATS model and Exponential Smoothing on the data collected from 22 February 2020 to 10 January 2022 and compared their accuracy using the data collected from 26 March 2020 to 04 April 2020, choosing the model with the lowest Mean Absolute Percentage Error (MAPE) value. Since the linear models seem not to easily follow the nonlinear patterns of daily confirmed COVID-19 cases, Artificial Neural Network (ANN) has been successfully applied to solve problems of forecasting nonlinear models. The model has been used for daily prediction of COVID-19 cases for the next 20 days without any additional intervention. The prediction model can be applied to other countries struggling with the COVID-19 pandemic and to any possible future pandemics. 展开更多
关键词 COVID-19 time series forecasting ANN ARIMA
下载PDF
STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting
6
作者 Zhuolun Jiang Zefei Ning +1 位作者 Hao Miao Li Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1232-1247,共16页
Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of f... Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting. 展开更多
关键词 time series forecasting multivariate time series spatio-temporal decomposition
原文传递
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
7
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) time series forecasting Recurrent neural network(RNN)
下载PDF
Multivariate Time Series Forecasting with Transfer Entropy Graph
8
作者 Ziheng Duan Haoyan Xu +2 位作者 Yida Huang Jie Feng Yueyang Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第1期141-149,共9页
Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely ... Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely applied.However,these methods assume that the predicted value of a single variable is affected by all other variables,ignoring the causal relationship among variables.To address the above issue,we propose a novel end-to-end deep learning model,termed graph neural network with neural Granger causality,namely CauGNN,in this paper.To characterize the causal information among variables,we introduce the neural Granger causality graph in our model.Each variable is regarded as a graph node,and each edge represents the casual relationship between variables.In addition,convolutional neural network filters with different perception scales are used for time series feature extraction,to generate the feature of each node.Finally,the graph neural network is adopted to tackle the forecasting problem of the graph structure generated by the MTS.Three benchmark datasets from the real world are used to evaluate the proposed CauGNN,and comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task. 展开更多
关键词 Multivariate time series(MTS)forecasting neural Granger causality graph Transfer Entropy(TE)
原文传递
TIME SERIES FORECASTING WITH MULTIPLE CANDIDATE MODELS:SELECTING OR COMBINING? 被引量:5
9
作者 YULean WANGShouyang +1 位作者 K.K.Lai Y.Nakamori 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第1期1-18,共18页
Various mathematical models have been commonly used in time series analysis and forecasting. In these processes, academic researchers and business practitioners often come up against two important problems. One is whe... Various mathematical models have been commonly used in time series analysis and forecasting. In these processes, academic researchers and business practitioners often come up against two important problems. One is whether to select an appropriate modeling approach for prediction purposes or to combine these different individual approaches into a single forecast for the different/dissimilar modeling approaches. Another is whether to select the best candidate model for forecasting or to mix the various candidate models with different parameters into a new forecast for the same/similar modeling approaches. In this study, we propose a set of computational procedures to solve the above two issues via two judgmental criteria. Meanwhile, in view of the problems presented in the literature, a novel modeling technique is also proposed to overcome the drawbacks of existing combined forecasting methods. To verify the efficiency and reliability of the proposed procedure and modeling technique, the simulations and real data examples are conducted in this study.The results obtained reveal that the proposed procedure and modeling technique can be used as a feasible solution for time series forecasting with multiple candidate models. 展开更多
关键词 time series forecasting model selection STABILITY ROBUSTNESS combiningforecasts
原文传递
AN ENSEMBLE MODEL OF ARIMA AND ANN WITH RESTRICTED BOLTZMANN MACHINE BASED ON DECOMPOSITION OF DISCRETE WAVELET TRANSFORM FOR TIME SERIES FORECASTING 被引量:3
10
作者 Warut Pannakkong Songsak Sriboonchitta Van-Nam Huynh 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2018年第5期690-708,共19页
Time series forecasting research area mainly focuses on developing effective forecasting models toimprove prediction accuracy. An ensemble model composed of autoregressive integrated movingaverage (ARIMA), artificia... Time series forecasting research area mainly focuses on developing effective forecasting models toimprove prediction accuracy. An ensemble model composed of autoregressive integrated movingaverage (ARIMA), artificial neural network (ANN), restricted Boltzmann machines (RBM), anddiscrete wavelet transform (DWT) is presented in this paper. In the proposed model, DWT firstdecomposes time series into approximation and detail. Then Khashei and Bijari's model, which is anensemble model of ARIMA and ANN, is applied to the approximation and detail to extract their bothlinear and nonlinear components and fit the relationship between the components as a function insteadof additive relationship. Furthermore, RBM is used to perform pre-training for generating initialweights and biases based on inputs feature for ANN. Finally, the forecasted approximation and detailare combined to obtain final forecasting. The forecasting capability of the proposed model is testedwith three well-known time series: sunspot, Canadian lynx, exchange rate time series. The predictionperformance is compared to the other six forecasting models. The results indicate that the proposedmodel gives the best performance in all three data sets and all three measures (i.e. MSE, MAE andMAPE). 展开更多
关键词 time series forecasting autoregressive integrated moving average (ARIMA) artificial neural network (ANN) discrete wavelet transform (DWT) restricted Boltzmann machine (RBM)
原文传递
Seasonal Based Electricity Demand Forecasting Using Time Series Analysis
11
作者 T. M. Usha S. Appavu Alias Balamurugan 《Circuits and Systems》 2016年第10期3320-3328,共10页
Consumption of the electric power highly depends on the Season under consideration. The various means of power generation methods using renewable resources such as sunlight, wind, rain, tides, and waves are season dep... Consumption of the electric power highly depends on the Season under consideration. The various means of power generation methods using renewable resources such as sunlight, wind, rain, tides, and waves are season dependent. This paves the way for analyzing the demand for electric power based on various Seasons. Many traditional methods are utilized previously for the seasonal based electricity demand forecasting. With the development of the advanced tools, these methods are replaced by efficient forecasting techniques. In this paper, a WEKA time series forecasting is being done for the electric power demand for the three seasons such as summer, winter and rainy seasons. The monthly electric consumption data of domestic category is collected from Tamil Nadu Electricity Board (TNEB). Data collected has been pruned based on the three seasons. The WEKA learning algorithms such as Multilayer Perceptron, Support Vector Machine, Linear Regression, and Gaussian Process are used for implementation. The Mean Absolute Error (MAE) and Direction Accuracy (DA) are calculated for the WEKA learning algorithms and they are compared to find the best learning algorithm. The Support Vector Machine algorithm exhibits low Mean Absolute Error and high Direction Accuracy than other WEKA learning algorithms. Hence, the Support Vector Machine learning algorithm is proven to be the WEKA learning algorithm for seasonal based electricity demand forecasting. The need of the hour is to predict and act in the deficit power. This paper is a prelude for such activity and an eye opener in this field. 展开更多
关键词 WEKA time series forecasting SMO Regression Linear Regression Gaussian Regression Multilayer Perceptron
下载PDF
Multi-factor high-order intuitionistic fuzzy timeseries forecasting model 被引量:1
12
作者 Ya'nan Wang Yingjie Lei +1 位作者 Yang Lei Xiaoshi Fan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1054-1062,共9页
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz... Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy. 展开更多
关键词 multi-factor high-order intuitionistic fuzzy time series forecasting model intuitionistic fuzzy inference.
下载PDF
Nonlinear Time Series Prediction Using Chaotic Neural Networks 被引量:3
13
作者 LIKe-Ping CHENTian-Lun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第6期759-762,共4页
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how th... A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. 展开更多
关键词 neural network chaotic dynamics forecasting nonlinear time series
下载PDF
A Measurement Study of the Ethereum Underlying P2P Network
14
作者 Mohammad ZMasoud Yousef Jaradat +3 位作者 Ahmad Manasrah Mohammad Alia Khaled Suwais Sally Almanasra 《Computers, Materials & Continua》 SCIE EI 2024年第1期515-532,共18页
This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contra... This work carried out a measurement study of the Ethereum Peer-to-Peer(P2P)network to gain a better understanding of the underlying nodes.Ethereum was applied because it pioneered distributed applications,smart contracts,and Web3.Moreover,its application layer language“Solidity”is widely used in smart contracts across different public and private blockchains.To this end,we wrote a new Ethereum client based on Geth to collect Ethereum node information.Moreover,various web scrapers have been written to collect nodes’historical data fromthe Internet Archive and the Wayback Machine project.The collected data has been compared with two other services that harvest the number of Ethereumnodes.Ourmethod has collectedmore than 30% more than the other services.The data trained a neural network model regarding time series to predict the number of online nodes in the future.Our findings show that there are less than 20% of the same nodes daily,indicating thatmost nodes in the network change frequently.It poses a question of the stability of the network.Furthermore,historical data shows that the top ten countries with Ethereum clients have not changed since 2016.The popular operating system of the underlying nodes has shifted from Windows to Linux over time,increasing node security.The results have also shown that the number of Middle East and North Africa(MENA)Ethereum nodes is neglected compared with nodes recorded from other regions.It opens the door for developing new mechanisms to encourage users from these regions to contribute to this technology.Finally,the model has been trained and demonstrated an accuracy of 92% in predicting the future number of nodes in the Ethereum network. 展开更多
关键词 Ethereum MEASUREMENT ethereum client neural network time series forecasting web-scarping wayback machine blockchain
下载PDF
A Novel Hybrid FA-Based LSSVR Learning Paradigm for Hydropower Consumption Forecasting 被引量:4
15
作者 TANG Ling WANG Zishu +2 位作者 LI Xinxie YU Lean ZHANG Guoxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1080-1101,共22页
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ... Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data. 展开更多
关键词 Artificial intelligence firefly algorithm hybrid model hydropower consumption leastsquares support vector regression time series forecasting.
下载PDF
A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries 被引量:2
16
作者 Xinyan Liu Xue-Qiang Zhang +4 位作者 Xiang Chen Gao-Long Zhu Chong Yan Jia-Qi Huang Hong-Jie Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期548-555,共8页
Estimating battery degradation is vital not only to monitor battery’s state-of-health but also to accelerate research on new battery chemistries. Herein, we present a data-driven approach to forecast the capacity fad... Estimating battery degradation is vital not only to monitor battery’s state-of-health but also to accelerate research on new battery chemistries. Herein, we present a data-driven approach to forecast the capacity fading trajectory of lab-assembled lithium batteries. Features with physical meanings in addition to predictive abilities are extracted from discharge voltage curves, enabling online prediction for a single cell with only its historical data. The robustness and generalizability allow for the demonstration on a compromised quality dataset consisting of batteries varying in battery architectures and cycling conditions,with superior accuracy for end of life and degradation trajectory prediction with average errors of 8.2%and 2.8%, respectively. Apart from the impressive prediction accuracy, the as-extracted features also provide physical insights, the incorporation of which into material design or battery operation conditions further enlightens the development of better batteries. We highlight the effectiveness of time-seriesbased techniques in forecasting battery cycling performance, as well as the huge potential of datadriven methods in unveiling hidden correlations in complicated energy chemistries such as lithium metal batteries. 展开更多
关键词 Battery prognosis Machine learning time series forecasting Online prediction Lithium metal batteries
下载PDF
Machine Learning and Classical Forecasting Methods Based Decision Support Systems for COVID-19 被引量:3
17
作者 RamazanÜnlü Ersin Namlı 《Computers, Materials & Continua》 SCIE EI 2020年第9期1383-1399,共17页
From late 2019 to the present day,the coronavirus outbreak tragically affected the whole world and killed tens of thousands of people.Many countries have taken very stringent measures to alleviate the effects of the c... From late 2019 to the present day,the coronavirus outbreak tragically affected the whole world and killed tens of thousands of people.Many countries have taken very stringent measures to alleviate the effects of the coronavirus disease 2019(COVID-19)and are still being implemented.In this study,various machine learning techniques are implemented to predict possible confirmed cases and mortality numbers for the future.According to these models,we have tried to shed light on the future in terms of possible measures to be taken or updating the current measures.Support Vector Machines(SVM),Holt-Winters,Prophet,and Long-Short Term Memory(LSTM)forecasting models are applied to the novel COVID-19 dataset.According to the results,the Prophet model gives the lowest Root Mean Squared Error(RMSE)score compared to the other three models.Besides,according to this model,a projection for the future COVID-19 predictions of Turkey has been drawn and aimed to shape the current measures against the coronavirus. 展开更多
关键词 Covid-19 machine learning time series forecasting
下载PDF
Forecasting Damage Mechanics By Deep Learning 被引量:1
18
作者 Duyen Le Hien Nguyen Dieu Thi Thanh Do +2 位作者 Jaehong Lee Timon Rabczuk Hung Nguyen-Xuan 《Computers, Materials & Continua》 SCIE EI 2019年第9期951-977,共27页
We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a signif... We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays.Relied on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict solutions.Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus shale.The predicted results by deep learning algorithms are well-agreed with experimental data. 展开更多
关键词 Damage mechanics time series forecasting deep learning long short-term memory multi-layer neural networks hydraulic fracturing
下载PDF
Runtime Power Allocation Based on Multi-GPU Utilization in GAMESS
19
作者 Masha Sosonkina Vaibhav Sundriyal Jorge Luis Galvez Vallejo 《Journal of Computer and Communications》 2022年第9期66-80,共15页
To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performan... To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performance under a given power budget by distributing the available power according to the relative GPU utilization. Time series forecasting methods were used to develop workload prediction models that provide accurate prediction of GPU utilization during application execution. Experiments were performed on a multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100 GPUs used for quantum chemistry calculations in the GAMESS package. For a limited power budget, the proposed strategy may deliver as much as hundred times better GAMESS performance than that obtained when the power is distributed equally among all the GPUs. 展开更多
关键词 time series forecasting ARIMA Power Allocation Performance Modeling GAMESS GPU Utilization
下载PDF
Inventory Management and Demand Forecasting Improvement of a Forecasting Model Based on Artificial Neural Networks
20
作者 Cisse Sory Ibrahima Jianwu Xue Thierno Gueye 《Journal of Management Science & Engineering Research》 2021年第2期33-39,共7页
Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supp... Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast. 展开更多
关键词 Inventory management Demand forecasting Seasonal time series Artificial neural networks Transfer function Inventory management Demand forecasting Seasonal time series Artificial neural networks Transfer function
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部