This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare...In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.展开更多
Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal mo...Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.展开更多
In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smalle...For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smallest enclosing ball problem.Some properties of the maximal time function are proven,including the convexity,the lower semicontinuity,and the exact characterizations of its subdifferential formulas.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio tele...A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi...The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.展开更多
On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displace...On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.展开更多
A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequ...A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.展开更多
Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed fo...Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.展开更多
On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency di...On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.展开更多
In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile ...In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure...The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure(ECCM) scheme is proposed to remove the ISRJ-based false targets from the pulse compression result of the de-chirping radar. Through the time-frequency(TF) analysis of the radar echo signal, it can be found that the TF characteristics of the ISRJ signal are discontinuous in the pulse duration because the ISRJ jammer needs short durations to receive the radar signal. Based on the discontinuous characteristics a particular band-pass filter can be generated by two alternative approaches to retain the true target signal and suppress the ISRJ signal. The simulation results prove the validity of the proposed ECCM scheme for the ISRJ.展开更多
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金supported by the Science Project for Earthquake Resilience of China Earthquake Administration(XH22020YA).
文摘In this paper, we make a statistical analysis of the fault information of the underground fluid instruments of 12 models in China from January 2021 to May 2022 based on the Pearson correlation coefficient, and compare the fault statistics of the meteorological three-element instruments of 3 models during the study period. The results show that:(1) The numbers of faults of the underground fluid instruments of 12models with different service times are basically positively correlated with the numbers of the corresponding instruments, with good consistency. Moreover, the automatic observation instruments(8models) with more than 30 units are significantly correlated at a 0.05 significance level(95% confidence level). Even at a 0.01 significance level(99% confidence level), there are 7 models(7/8) with significant correlation.(2) The positive and negative correlations between the monthly average number of faults and the corresponding service times of the underground fluid instruments of 12 models with different service times are random, and there are 9 models(75%) with no significant correlation at a 0.05 significance level(95% confidence level), while 12 models(100%) with no significant correlation at a 0.01significance level(99% confidence level).(3) The monthly average numbers of faults of the underground fluid instruments of 12 models are basically 0.02-0.05 times/(unit·month), and the overall fault frequency is low.(4) The fault statistics results of the meteorological three-element instruments of 3 models are consistent with the characteristics of the underground fluid instruments of 12 models. In general,there is no significant correlation between the fault frequency and the service time of underground fluid instruments.(5) The results of this paper demonstrate that the service time of underground fluid instruments cannot be taken as the main reason for whether to update the instruments. Similarly, the fault frequency of the instruments cannot be taken as the main reason for the service life of the instruments in the process of formulating the service life standards of underground fluid instruments.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900502the National Science Foundation of China under Grant 62001179the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111。
文摘Orthogonal time-frequency space(OTFS),which exhibits beneficial advantages in high-mobility scenarios,has been considered as a promising technology in future wireless communication systems.In this paper,a universal model for OTFS systems with generalized waveform has been developed.Furthermore,the average bit error probability(ABEP)upper bounds of the optimal maximum likelihood(ML)detector are first derived for OTFS systems with generalized waveforms.Specifically,for OTFS systems with the ideal waveform,we elicit the ABEP bound by recombining the transmitted signal and the received signal.For OTFS systems with practical waveforms,a universal ABEP upper bound expression is derived using moment-generating function(MGF),which is further extended to MIMO-OTFS systems.Numerical results validate that our theoretical ABEP upper bounds are concur with the simulation performance achieved by ML detectors.
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
基金supported by the National Natural Science Foundation of China(11201324)the Fok Ying Tuny Education Foundation(141114)the Sichuan Technology Program(2022ZYD0011,2022NFSC1852).
文摘For a general normed vector space,a special optimal value function called a maximal time function is considered.This covers the farthest distance function as a special case,and has a close relationship with the smallest enclosing ball problem.Some properties of the maximal time function are proven,including the convexity,the lower semicontinuity,and the exact characterizations of its subdifferential formulas.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
基金supported by the National Natural Sci-ence Foundation of China(12273098).
文摘A time and frequency system is a critical component of Very Long Baseline Interferometry(VLBI)stations,providing stable and reliable standards that directly impact data processing quality.At the Tianma 65 m radio telescope(TMRT),this system has been meticulously designed to ensure long-term reliability and high performance.It incorporates high-performance hydrogen atomic clocks,high-precision time standards,automatic signal switching,and robust system software.This comprehensive approach has enabled the system to achieve long-term reliable operation,successfully supporting both major national engineering tasks and daily scientific observations.The effectiveness of the system is evidenced by its consistent delivery of the precision and stability required for radio astronomy.This article provides an in-depth exploration of the design and operation of the time and frequency system at the Tianma 65 m telescope,examining various aspects of its architecture,implementation,and performance.By sharing these insights,we aim to contribute knowledge that could benefit similar systems at other VLBI stations,greatly advancing radio astronomy infrastructure.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.
基金supported by the UM Multi-Year Research Grant under Grant No.MYRG144(Y3-L2)-FST11-ZLM
文摘The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform.
基金The project was financially supported by China Postdoctor Science Foundationthe Key Project Foundation of the Chinese Academy of Sciences and China National Offshore Oil Corporation
文摘On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.
基金the Ministerial Level Advanced Research Foundation(020045089)
文摘A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.
文摘Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.
基金Supported by the National Natural Science Foundation of China( 4 990 40 10 )
文摘On the basis of an introduction of the Wigner Higher-Order spectra (WHOS) and a general class of time-frequency higher-order moment spectra, the geophysical signal was analyzed using the higher order time-frequency distributions (TFD). Simulation results obtained in this paper show that the higher-order TFD (Wigner Bispectrum, Wigner Trispectrum and Choi-Williams Trispectrum) have much better Time-Frequency Concentration than the second-order TFD, and the reduced interference higher-order TFD such as CWT can effectively reduce the cross-term in multicomponent signals and simultaneously obtain high time-frequency concentration.
基金in part by the National Natural Science Foundation of China under Grant 61771291,Grant 61671278in part by the Key Research and Development Project of Shandong Province under Grant 2018GGX101009,Grant 2019TSLH0202,Grant 2020CXGC010109+1 种基金in part by the National Nature Science Foundation of China for Excellent Young Scholars under Grant 61622111in part by the Project of International Cooperation and Exchanges NSFC under Grant 61860206005.
文摘In this paper,we design a spatial modulation based orthogonal time frequency space(SMOTFS)system to achieve improved transmission reliability and meet the high transmission rate and highspeed demands of future mobile communications,which fully utilizes the characteristics of spatial modulation(SM)and orthogonal time frequency space(OTFS)transmission.The detailed system design and signal processing of the SM-OTFS system have been presented.The closed-form expressions of the average symbol error rate(ASER)and average bit error rate(ABER)of the SM-OTFS system have been derived over the delay-Doppler channel with the help of the union bounding technique and moment-generating function(MGF).Meanwhile,the system complexity has been evaluated.Numerical results verify the correctness of the theoretical ASER and ABER analysis of the SM-OTFS system in the high signal-to-noise ratio(SNR)regions and also show that the SM-OTFS system outperforms the traditional SM based orthogonal frequency division multiplexing(SM-OFDM)system with limited complexity increase under mobile conditions,especially in high mobility scenarios.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金supported by the National Natural Science Foundation of China(61271442)
文摘The interrupted sampling repeater jamming(ISRJ) is an effective deception jamming method for coherent radar, especially for the wideband linear frequency modulation(LFM) radar. An electronic counter-countermeasure(ECCM) scheme is proposed to remove the ISRJ-based false targets from the pulse compression result of the de-chirping radar. Through the time-frequency(TF) analysis of the radar echo signal, it can be found that the TF characteristics of the ISRJ signal are discontinuous in the pulse duration because the ISRJ jammer needs short durations to receive the radar signal. Based on the discontinuous characteristics a particular band-pass filter can be generated by two alternative approaches to retain the true target signal and suppress the ISRJ signal. The simulation results prove the validity of the proposed ECCM scheme for the ISRJ.