We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length...We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.展开更多
Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^...Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^(*)emission ratio for the Me_(2)N-substited flavonoid(MNF)compound.The geometric structures of the S_(0) and S_(1) states are denoted as the Enol,Enol^(*),and Keto*.In addition,the absorption and fluorescence peaks are also calculated.It is noted that the calculated large Stokes shift is in good agreement with the experimental result.Furthermore,our results confirm that the ESIPT process happens upon photoexcitation,which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR)spectra involved in the proton transfer and in the potential energy curves.Besides,the calculations of highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S_(1) state induces the ESIPT.Moreover,the thermodynamic calculation for the MNF shows that the Enol^(*)/Keto^(*)emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.展开更多
Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of ...Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of carbazole, were studicd by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-3 IG* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-1inked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electronaccepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.展开更多
Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batt...Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
Calix[n]arenes was utilized to detect PABA,the primary sunscreen component.This study investigates the interaction of calix[4]arene(C4),calix[6]arene(C6),and PABA using the Langmuir method and first-principle density ...Calix[n]arenes was utilized to detect PABA,the primary sunscreen component.This study investigates the interaction of calix[4]arene(C4),calix[6]arene(C6),and PABA using the Langmuir method and first-principle density functional theory(DFT).Using the Langmuir-Schaefer(LS)technique,an ultrathin film composed of calix[n]arenes and their complexes with PABA was deposited on various substrates.Based on the Langmuir study,the PABA molecule was bonded to the lower rims of both C4 and C6 with the host-guest ratio of 1:1.All of the LS films formed were then characterized by ultravioletvisible spectroscopy(UV-Vis),Fourier-transform infrared spectroscopy(FTIR)and carbon,hydrogen,nitrogen,sulfur elemental analyzer(CHNS).The band gap reduction obtained in the DFT study denotes the charge transfer interaction with promising reactivity between the calix[n]arenes and PABA.The sensing of PABA by C4 and C6 is successful based on the formation of bonding between them due to the hosts’effective trapping capacity.The outcomes of this study could be applied to drug delivery systems for future pharmaceutical and medical applications.展开更多
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean...Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.展开更多
We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implemen...We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition...The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice p...The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice parameters remained the same, that is tetragonal crystal structure for 0% and 100% doping concentration. The electronic band gap of Cu2Zn1−xBaxSn1−ySiyS4 compounds has been gradually increased for continuous increment of doping concentration where the highest electronic band gap is 1.117 eV for Cu2BaSiS4 structure. Moreover, the band gap changes from direct to indirect band gap with the increase of doping concentration in the parent compound. The absorption coefficient has been found to be high (> 104 cm−1) in UV-region for all the doping concentration which makes the studied compound as a potential candidate of absorber layer in the UV detector. The theoretical study of the effect of double doping in the CZTS compound is very interesting for improving the quality of it and it would be a reference for the theoretical and experimental researchers.展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-depen...Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-dependent density functional theory.Both theoretical ECD and ORD of these two compounds were in good match with the experimental data.ECD spectrum of artemether could be totally attributed to the peroxide group,and that of artemisinin was an overlay of contribution from δ-lactone and peroxide moieties,which leading to a positive maximum at 260 nm.Our results showed that peroxide group could produce a broad ECD band in the far-UV region originated from electron transitions of HOMO →LUMO,HOMO-1 →LUMO and HOMO-2 →LUMO in the case of artemether.This work provided a theoretical interpretation of the ECD behavior of peroxide bond.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
The rapid miniaturization of elect, ronic devices motivates research interests in quantum transport.Recently time-dependent quantum transport has become an important research topic. Here we re- view recent progresses ...The rapid miniaturization of elect, ronic devices motivates research interests in quantum transport.Recently time-dependent quantum transport has become an important research topic. Here we re- view recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville---von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.展开更多
The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density funct...The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functionaltheory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorp-tion spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region ap-years for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.展开更多
CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the struct...CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.展开更多
As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)...As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)simulations.Analysis of the compositions and contents of the metallic compounds in the coal tar revealed that the main components were iron and calcium naphthenates.Direct filtration reduced the mechanical impurity content from 0.24%to 0.0752%,indicating that most of the large particles could be easily removed.Among the four complexing agents,namely,acetic acid,oxalic acid,citric acid,and ethylenediaminetetraacetic acid,oxalic acid exhibited the best demetallization performance.The DFT simulations suggested that the high performance of oxalic acid originated from its 1:1 coordination mode,rigid dicarboxyl structure,and greater binding energy.展开更多
Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results...Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results reveal that there is a significant linear relationship between the adsorption energy values and the energy gaps of the Zr_(n)(n=2-5)clusters.Furthermore,the calculations of the reaction paths between Zr_(n)(n=2-5)and single water molecule show that water molecule can react with Zr_(n)(n=2-5)clusters to dissociate,producing hydrogen,and O atoms mix with the clusters to generate Zr_(n)O(n=2-5),all of which are exothermic reactions.According to the released energy,the Zr4 cluster is the most efficient in Zr_(n)(n=2-5)clusters reacting with single water molecule.The natural population analysis(NPA)and density of states(DOS)demonstrate the production of hydrogen and orbital properties in different energy ranges,respectively,jointly forecasting that Zr_(n)O(n=2-5)will probably continue to react with more water molecules.Our findings contribute to better understanding of Zr's chemical reactivity,which can conduce to the development of effective Zr-based catalysts and hydrogen-production methods.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11074176 and 10976019)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100181110080)
文摘We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922204)the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)the Natural Science Foundation of Jilin Province,China(Grant No.20150101063JC)
文摘Time-dependent density functional theory(TDDFT)method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT)process and the mechanism for temperature effect on the Enol^(*)/Keto^(*)emission ratio for the Me_(2)N-substited flavonoid(MNF)compound.The geometric structures of the S_(0) and S_(1) states are denoted as the Enol,Enol^(*),and Keto*.In addition,the absorption and fluorescence peaks are also calculated.It is noted that the calculated large Stokes shift is in good agreement with the experimental result.Furthermore,our results confirm that the ESIPT process happens upon photoexcitation,which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR)spectra involved in the proton transfer and in the potential energy curves.Besides,the calculations of highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S_(1) state induces the ESIPT.Moreover,the thermodynamic calculation for the MNF shows that the Enol^(*)/Keto^(*)emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT.
基金The project was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 05A002)the Prominent Mid-youth Science and Technology Foundation of Hunan Province (No. 04JJ1010)
文摘Electronic properties, such as HOMO and LUMO energies, band gaps, ionization potential (IP) and electron affinity (EA) of 2,7- and 3,6-1inked carbazole trimers, two conjugated oligomcrs with different linkages of carbazole, were studicd by the density functional theory with Becke-Lee-Young-Parr composite exchange correlation functional (B3LYP). The absorption spectra of these compounds were also investigated by time-dependent density functional theory (TD-DFT) with 6-3 IG* basis set. The calculated results indicated that the HOMO and LUMO of the 2,7- and 3,6-1inked carbazole trimers are both slightly destabilized on going from methyl substitution to sec-butyl substitution. Both IP and EA exhibit their good hole-transporting but poor electronaccepting ability. The presence of alkyl groups on the nitrogen atoms does not affect the intra-chain electronic delocalization along the molecular frame. Thus no significant effect on the band gap and absorption spectra of compounds has been found.
基金the support of the National Natural Science Foundation of China(Grant No.51472074).
文摘Understanding the adsorption interactions between carbon materials and sulfur compounds has far-reaching impacts,in addition to their well-known important role in energy storage and conversion,such as lithium-ion batteries.In this paper,properties of intrinsic B or Si single-atom doped,and B-Si codoped graphene(GR)and graphdiyne(GDY)were investigated by using density functional theory-based calculations,in which the optimal doping configurations were explored for potential applications in adsorbing sulfur compounds.Results showed that both B or Si single-atom doping and B-Si codoping could substantially enhance the electron transport properties of GR and GDY,improving their surface activity.Notably,B and Si atoms displayed synergistic effects for the codoped configurations,where B-Si codoped GR/GDY exhibited much better performance in the adsorption of sulfurcontaining chemicals than single-atom doped systems.In addition,results demonstrated that,after B-Si codoping,the adsorption energy and charge transfer amounts of GDY with sulfur compounds were much larger than those of GR,indicating that B-Si codoped GDY might be a favorable material for more effectively interacting with sulfur reagents.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.
基金Funded by the Sultan Idris Education University(UPSI)(No.2020-0256-103-02(FRGS/1/2020/STG07/UPSI/02/2))provided by the Ministry of Higher Education,Malaysia。
文摘Calix[n]arenes was utilized to detect PABA,the primary sunscreen component.This study investigates the interaction of calix[4]arene(C4),calix[6]arene(C6),and PABA using the Langmuir method and first-principle density functional theory(DFT).Using the Langmuir-Schaefer(LS)technique,an ultrathin film composed of calix[n]arenes and their complexes with PABA was deposited on various substrates.Based on the Langmuir study,the PABA molecule was bonded to the lower rims of both C4 and C6 with the host-guest ratio of 1:1.All of the LS films formed were then characterized by ultravioletvisible spectroscopy(UV-Vis),Fourier-transform infrared spectroscopy(FTIR)and carbon,hydrogen,nitrogen,sulfur elemental analyzer(CHNS).The band gap reduction obtained in the DFT study denotes the charge transfer interaction with promising reactivity between the calix[n]arenes and PABA.The sensing of PABA by C4 and C6 is successful based on the formation of bonding between them due to the hosts’effective trapping capacity.The outcomes of this study could be applied to drug delivery systems for future pharmaceutical and medical applications.
基金Project supported by the Fundamental Research Fund for the Central Universities of Chinathe Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No.ZY2023007)。
文摘Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.
文摘We present a formalism of charge self-consistent dynamical mean field theory(DMFT)in combination with densityfunctional theory(DFT)within the linear combination of numerical atomic orbitals(LCNAO)framework.We implementedthe charge self-consistent DFT+DMFT formalism by interfacing a full-potential all-electron DFT code with threehybridization expansion-based continuous-time quantum Monte Carlo impurity solvers.The benchmarks on several 3d,4fand 5f strongly correlated electron systems validated our formalism and implementation.Furthermore,within the LCANOframework,our formalism is general and the code architecture is extensible,so it can work as a bridge merging differentLCNAO DFT packages and impurity solvers to do charge self-consistent DFT+DMFT calculations.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金supported by the National Natural Science Foundation of China(NSFC)(No.12205097)the Fundamental Research Funds for the Central Universities(No.2024MS071)。
文摘The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking covariant density functional theory in a three-dimensional lattice space.The reduced B(E3)transition probability is implemented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments.The available data,including the I-ωrelation and electric transitional probabilities B(E2)and B(E3)are well reproduced.Furthermore,it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up to high spins(I≈24h).
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
文摘The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice parameters remained the same, that is tetragonal crystal structure for 0% and 100% doping concentration. The electronic band gap of Cu2Zn1−xBaxSn1−ySiyS4 compounds has been gradually increased for continuous increment of doping concentration where the highest electronic band gap is 1.117 eV for Cu2BaSiS4 structure. Moreover, the band gap changes from direct to indirect band gap with the increase of doping concentration in the parent compound. The absorption coefficient has been found to be high (> 104 cm−1) in UV-region for all the doping concentration which makes the studied compound as a potential candidate of absorber layer in the UV detector. The theoretical study of the effect of double doping in the CZTS compound is very interesting for improving the quality of it and it would be a reference for the theoretical and experimental researchers.
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金supported by the Fundamental Research Funds for the Central Institutes of China(No.2012ZD03)
文摘Chiroptical properties including electronic circular dichroism(ECD) and optical rotatory dispersion(ORD) of artemisinin and artemether have been fully studied using quantum-chemical calculation based on time-dependent density functional theory.Both theoretical ECD and ORD of these two compounds were in good match with the experimental data.ECD spectrum of artemether could be totally attributed to the peroxide group,and that of artemisinin was an overlay of contribution from δ-lactone and peroxide moieties,which leading to a positive maximum at 260 nm.Our results showed that peroxide group could produce a broad ECD band in the far-UV region originated from electron transitions of HOMO →LUMO,HOMO-1 →LUMO and HOMO-2 →LUMO in the case of artemether.This work provided a theoretical interpretation of the ECD behavior of peroxide bond.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
文摘The rapid miniaturization of elect, ronic devices motivates research interests in quantum transport.Recently time-dependent quantum transport has become an important research topic. Here we re- view recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville---von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.
文摘The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e.,bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functionaltheory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorp-tion spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region ap-years for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.
基金supported by the National Natural Science Foundation of China (No. 52174297)Fundamental Research Funds for the Central Universities (No. FRF-TP-20026A1)+1 种基金the special grade of China Postdoctoral Science Foundation (No. 2021T140050)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.
基金the National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)the National Natural Science Foundation of China(22078347)the Key Research and Development Program of Hebei Province,China(21373303D).
文摘As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)simulations.Analysis of the compositions and contents of the metallic compounds in the coal tar revealed that the main components were iron and calcium naphthenates.Direct filtration reduced the mechanical impurity content from 0.24%to 0.0752%,indicating that most of the large particles could be easily removed.Among the four complexing agents,namely,acetic acid,oxalic acid,citric acid,and ethylenediaminetetraacetic acid,oxalic acid exhibited the best demetallization performance.The DFT simulations suggested that the high performance of oxalic acid originated from its 1:1 coordination mode,rigid dicarboxyl structure,and greater binding energy.
基金Project supported by the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province,Yibin University,China(Grant No.YBXYJSWL-ZD-2020-005)the Student’s Platform for Innovation and Entrepreneurship Training Program,China(Grant No.S202110616084)。
文摘Density functional theory(DFT)is used to calculate the most stable structures of Zr_(n)(n=2-5)clusters as well as the adsorption energy values of Zr_(n)(n=2-5)clusters after adsorbing single water molecule.The results reveal that there is a significant linear relationship between the adsorption energy values and the energy gaps of the Zr_(n)(n=2-5)clusters.Furthermore,the calculations of the reaction paths between Zr_(n)(n=2-5)and single water molecule show that water molecule can react with Zr_(n)(n=2-5)clusters to dissociate,producing hydrogen,and O atoms mix with the clusters to generate Zr_(n)O(n=2-5),all of which are exothermic reactions.According to the released energy,the Zr4 cluster is the most efficient in Zr_(n)(n=2-5)clusters reacting with single water molecule.The natural population analysis(NPA)and density of states(DOS)demonstrate the production of hydrogen and orbital properties in different energy ranges,respectively,jointly forecasting that Zr_(n)O(n=2-5)will probably continue to react with more water molecules.Our findings contribute to better understanding of Zr's chemical reactivity,which can conduce to the development of effective Zr-based catalysts and hydrogen-production methods.