When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportu...When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.展开更多
In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplin...In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.展开更多
WiMAX networks experience sporadic congestion on uplink when applications running at subscriber stations need more bandwidth to transmit than allocated. With the fast proliferation of mobile Internet, the wireless com...WiMAX networks experience sporadic congestion on uplink when applications running at subscriber stations need more bandwidth to transmit than allocated. With the fast proliferation of mobile Internet, the wireless community has been looking for a framework that can address the issue of impediment on uplink. Due to asymmetric behavior of Internet applications downlink sub-frame is expected to have longer duration as compared to uplink. According to IEEE 806.16 standard for WiMAX the segmentation of TDD frame between uplink and downlink can be dynamically redefined even at runtime. Research contributions so far lack in addressing an optimal strategy for readjustment of uplink and downlink sub-frame boundaries;based on traffic statistics. In this paper, we introduce a mechanism that allows uplink sub-frame to grow, borrowing resources from the downlink sub-frame, if the uplink utilization is high and the downlink is being underutilized. We present here, a framework to dynamically demarcate the TDD frame-duration between uplink and downlink. Proposed algorithm takes into account the present utilization of downlink and reallocates a certain quantum of free resources to uplink. This occurs when uplink observes shortage of bandwidth to transmit. We simulate some test scenarios using OPNET Modeler with and without dynamic reallocation capability. The results of our simulation confirm the effectiveness of proposed algorithm which observes a remarkable decrease in end-to-end packet delay. Also, we observe an improvement in throughput at uplink such that, the performance of downlink remains unaffected.展开更多
In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations o...In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.展开更多
In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of...In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of optimal adaptation transmission mode. However, in practice, there is an undesirable but non-negligible effect, namely the asymmetric interference, that makes the assumptions no longer valid. In this paper, a simple closed-loop feedback method of compensating interference asymmetry in TDD multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system is proposed. The system makes the estimated interference at transmit-side be able to track the instantaneous receive-side interference dynamically. The proposed method maintains constant frame error rate (FER) by adopting adaptive modulation coding (AMC) and power loading. The final simulations have verified the effectiveness of the new method.展开更多
基金supported by the National Natural Science Foundation of China under Grants No. 60832008,No. 60902001
文摘When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.
文摘In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.
文摘WiMAX networks experience sporadic congestion on uplink when applications running at subscriber stations need more bandwidth to transmit than allocated. With the fast proliferation of mobile Internet, the wireless community has been looking for a framework that can address the issue of impediment on uplink. Due to asymmetric behavior of Internet applications downlink sub-frame is expected to have longer duration as compared to uplink. According to IEEE 806.16 standard for WiMAX the segmentation of TDD frame between uplink and downlink can be dynamically redefined even at runtime. Research contributions so far lack in addressing an optimal strategy for readjustment of uplink and downlink sub-frame boundaries;based on traffic statistics. In this paper, we introduce a mechanism that allows uplink sub-frame to grow, borrowing resources from the downlink sub-frame, if the uplink utilization is high and the downlink is being underutilized. We present here, a framework to dynamically demarcate the TDD frame-duration between uplink and downlink. Proposed algorithm takes into account the present utilization of downlink and reallocates a certain quantum of free resources to uplink. This occurs when uplink observes shortage of bandwidth to transmit. We simulate some test scenarios using OPNET Modeler with and without dynamic reallocation capability. The results of our simulation confirm the effectiveness of proposed algorithm which observes a remarkable decrease in end-to-end packet delay. Also, we observe an improvement in throughput at uplink such that, the performance of downlink remains unaffected.
基金Sponsored by the National Advanced Technologies Researching and Developing Programs (No.2004AA123160).
文摘In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.
基金the National Natural Science Foundation of China (No. 60572130)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University+3 种基金the Research Fund of Qing-Lan Engineering, Jiangsu Provincethe Key Project of Natural Science Research Program of Universities, Jiangsu Province (No. 08KJD510001)the Doctorial Fundation of Ministry of Educationthe National Basic Research Program (973) of China (No. 2007CB310607)
文摘In wireless communications systems with time-division duplex (TDD) deployment, channel reciprocity and symmetric interference between transmitter and receiver sides are two widely-adopted assumptions for the design of optimal adaptation transmission mode. However, in practice, there is an undesirable but non-negligible effect, namely the asymmetric interference, that makes the assumptions no longer valid. In this paper, a simple closed-loop feedback method of compensating interference asymmetry in TDD multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system is proposed. The system makes the estimated interference at transmit-side be able to track the instantaneous receive-side interference dynamically. The proposed method maintains constant frame error rate (FER) by adopting adaptive modulation coding (AMC) and power loading. The final simulations have verified the effectiveness of the new method.