期刊文献+
共找到972,631篇文章
< 1 2 250 >
每页显示 20 50 100
Sentinel-1 In SAR observations and time-series analysis of co-and postseismic deformation mechanisms of the 2021 Mw 5.8 Bandar Ganaveh Earthquake,Southern Iran
1
作者 Reza SABER Veysel ISIK +1 位作者 Ayse CAGLAYAN Marjan TOURANI 《Journal of Mountain Science》 SCIE CSCD 2023年第4期911-927,共17页
In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co... In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics. 展开更多
关键词 Sentinel‑1 InSAR time-series Neotectonic reactivation Seismogenic fault Bandar Ganaveh earthquakes Zagros Fold-Thrust Belt Arabian-Eurasian collision
下载PDF
Time-series analysis of the characteristic pressure fluctuations in a conical fluidized bed with negative pressure 被引量:1
2
作者 Sheng Fang Yanding Wei +2 位作者 Lei Fu Geng Tian Haibin Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期87-99,共13页
The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass an... The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass and particle size.The pressure fluctuation signals are analyzed by the time and the frequency domain methods.A method for absolutely characterizing the degree of the energy concentration at the main frequency is proposed,where the calculation is to divide the original power spectrum by the average signal power.A phenomenon where the gas velocity curve temporarily stops growing is observed when the material mass is light,and the particle size is small.The standard deviation and kurtosis both rapidly change at the minimum fluidization velocity and thus can be used to determine the flow regime,and the variation rule of the kurtosis is independent of both the material mass and particle size.In the initial fluidization stage,the dominant pressure signal comes from the material movement;with the increase in the gas velocity,the power of a 2.5 Hz signal continues to increase.A method of dividing the main frequency by the average cycle frequency can conveniently determine the fluidized state,and a novel concept called stable fluidized zone proposed in this paper can be obtained.Controlling the gas velocity within the stable fluidized zone ensures that the fluidized bed consistently remains in a stable fluidized state. 展开更多
关键词 Conical fluidized bed Negative pressure Pressure fluctuation time-series analysis Characteristic value Fluidized state
下载PDF
Time-series Analysis in Imatinib-resistant Chronic Myeloid Leukemia K562-cells under Different Drug Treatments 被引量:1
3
作者 赵艳红 张雪芳 +4 位作者 赵艳秋 白帆 秦凡 孙晶 东颖 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第4期621-627,共7页
Chronic myeloid leukemia(CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed t... Chronic myeloid leukemia(CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with(n=12) or without drug administration(n=5). Three drug treatment groups were considered for this study: arsenic trioxide(ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point(3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average(coefficient of variation) 〉0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner(STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group(e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group(e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation. 展开更多
关键词 chronic myeloid leukemia time-series genes expression pattern AMN107 and ATO combination
下载PDF
Time-series analysis with a hybrid Box-Jenkins ARIMA 被引量:2
4
作者 Dilli R Aryal 王要武 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期413-421,共9页
Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been success... Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation. 展开更多
关键词 time series analysis ARIMA Box-Jenkins methodology artificial neural networks hybrid model
下载PDF
Modeling urban redevelopment:A novel approach using time-series remote sensing data and machine learning
5
作者 Li Lin Liping Di +6 位作者 Chen Zhang Liying Guo Haoteng Zhao Didarul Islam Hui Li Ziao Liu Gavin Middleton 《Geography and Sustainability》 CSCD 2024年第2期211-219,共9页
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su... Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment. 展开更多
关键词 Urban redevelopment Urban sustainability Remote sensing time-series analysis Machine learning
下载PDF
Time-series analysis of the relationship between air quality, temperature, and sudden unexplained death in Beijing during 2005-2008 被引量:5
6
作者 TIAN Zhao-xing ZHANG Yan-shen +1 位作者 YAN Wei ZHAO Wen-kui 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第24期4429-4433,共5页
Background There is a yearly increase in the rate of sudden unexplained death (SUD), even through extensive physical examination and the testing of a large number of biomarkers, the cause of sudden death in patients... Background There is a yearly increase in the rate of sudden unexplained death (SUD), even through extensive physical examination and the testing of a large number of biomarkers, the cause of sudden death in patients previously in good health cannot be fully determined. During clinical practice, a spatial aggregation phenomenon has been observed in the incidence of sudden unexplained death. Previous research has shown that environmental factors, such as air pollution, weather conditions, etc., have a significant impact on human health. In the wake of the continuous environmental damage, the relationship between environmental factors and sudden unexplained death still needs to be studied. To study the relationship between sudden unexplained death and air quality and temperature, commonly used markers such as particulate matter of aerodynamic diameter 〈10 μm (PM10), daily average concentration of the gaseous pollutants sulfur dioxide (SO2) and nitrogen dioxide (NO2), and the daily average temperature were investigated. Methods The methods include collecting the data of sudden unexplained death; air quality monitoring; meteorological monitoring from January 1, 2005 to December 31, 2008; utilizing generalized additive models (GAM); controlling the influential factors such as secular trend, seasonal trend, and Sunday dummy variable; and analyzing the correlation between daily inhalable particle concentration, daily average temperature, and the number of daily SUD. Results There was no statistical significance between the daily inhalable particle and daily incidence of sudden unexplained death. Incidence rate of sudden unexplained death had nonlinear positive correlation with daily temperature. When the temperature was 5℃ above the daily average temperature, the daily incidence of sudden unexplained death went up with the rising temperature. Conclusion Temperature may be one of the key risk factor or precipitating factor of SUD. 展开更多
关键词 air quality TEMPERATURE sudden unexplained death time-series analysis
原文传递
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:4
7
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:2
8
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 NETWORK analysis PREVENTION
下载PDF
A Review on Sources,Extractions and Analysis Methods of a Sustainable Biomaterial:Tannins 被引量:1
9
作者 Antonio Pizzi Marie-Pierre Laborie Zeki Candan 《Journal of Renewable Materials》 EI CAS 2024年第3期397-425,共29页
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ... Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses. 展开更多
关键词 TANNINS FLAVONOIDS SOURCES extraction methods analysis methods
下载PDF
Lagrangian coherent structure analysis on transport of Acetes chinensis along coast of Lianyungang,China 被引量:1
10
作者 Kexin WANG Xueqing ZHANG +2 位作者 Qi LOU Xusheng XIANG Ying XIONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期345-359,共15页
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the... Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources. 展开更多
关键词 plankton accumulation hydrodynamic model Lagrangian particle-tracking model Lagrangian analysis
下载PDF
Iron and ferritin effects on intensive care unit mortality:A metaanalysis 被引量:1
11
作者 Deng-Can Yang Bo-Jun Zheng +1 位作者 Jian Li Yi Yu 《World Journal of Clinical Cases》 SCIE 2024年第16期2803-2812,共10页
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ... BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population. 展开更多
关键词 IRON FERRITIN MORTALITY Critically ill Meta analysis
下载PDF
Semi-analytical solution for drained expansion analysis of a hollow cylinder of critical state soils 被引量:1
12
作者 He Yang Jialiang Zhang +1 位作者 Haisui Yu Peizhi Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2326-2340,共15页
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ... The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers. 展开更多
关键词 Cavity expansion Drained analysis Boundary effect Critical state soil Non-self-similar Eulerian-Lagrangian approach
下载PDF
Identification of cell surface markers for acute myeloid leukemia prognosis based on multi-model analysis 被引量:1
13
作者 Jiaqi Tang Lin Luo +18 位作者 Bakwatanisa Bosco Ning Li Bin Huang Rongrong Wu Zihan Lin Ming Hong Wenjie Liu Lingxiang Wu Wei Wu Mengyan Zhu Quanzhong Liu Peng Xia Miao Yu Diru Yao Sali Lv Ruohan Zhang Wentao Liu Qianghu Wang Kening Li 《Journal of Biomedical Research》 CAS CSCD 2024年第4期397-412,共16页
Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been s... Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy. 展开更多
关键词 acute myeloid leukemia cell surface markers PROGNOSIS drug sensitivity multi-model analysis
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
14
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis
15
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism Deep learning Chemical process time-series Fault diagnosis
下载PDF
Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network
16
作者 Zihao Song Yan Zhou +2 位作者 Wei Cheng Futai Liang Chenhao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3349-3376,共28页
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis... The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design. 展开更多
关键词 Missing value imputation time-series tracks probabilistic sparsity diagonal masking self-attention weight fusion
下载PDF
Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis
17
作者 Long Chen Yan Yu +2 位作者 Yanpeng Shang Zhonghou Wang Jing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期817-846,共30页
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre... Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components. 展开更多
关键词 Contact analysis involute gear isogeometric analysis finite element analysis
下载PDF
Preliminary electromagnetic analysis of the COOL blanket for CFETR
18
作者 鲁帅领 马学斌 刘松林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期101-108,共8页
The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Max... The supercritical CO_(2)cOoled Lithium-Lead(COOL)blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor(CFETR).This work focuses on the electromagnetic(EM)loads(Maxwell force and Lorentz force)acting on the COOL blanket,which are important mechanical loads in further structural analysis of the COOL blanket.A 3D electromagnetic analysis is performed using the ANSYS finite element method to obtain EM loads on the COOL blanket in this study.At first,the magnetic scalar potential(MSP)method is used to obtain the magnetic field and the Maxwell force on the COOL blanket.Then,the magnetic vector potential(MVP)method is performed during a plasma disruption event to get the eddy current distribution.At last,a multi-step method is adopted for the calculation of the Lorentz force and the torque.The maximum Lorentz forces of inboard and outboard blanket structural components are 5624 kN and 2360 kN respectively. 展开更多
关键词 CFETR COOL blanket finite element analysis electromagnetic analysis
下载PDF
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
19
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
下载PDF
Geometric prior guided hybrid deep neural network for facial beauty analysis
20
作者 Tianhao Peng Mu Li +2 位作者 Fangmei Chen Yong Xu David Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期467-480,共14页
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ... Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task. 展开更多
关键词 deep neural networks face analysis face biometrics image analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部