期刊文献+
共找到57,025篇文章
< 1 2 250 >
每页显示 20 50 100
Combined heuristics for determining order quantity under time-varying demands
1
作者 Tang Jiafu Pan Zhendong Gong Jun Liu Shixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期99-111,共13页
The time-varying demands for a certain period are often assumed to be less than the basic economic order quantity (EOQ) so that total replenishment quantity rather than economic order quantity is normally considered... The time-varying demands for a certain period are often assumed to be less than the basic economic order quantity (EOQ) so that total replenishment quantity rather than economic order quantity is normally considered by most of the heuristics. This acticle focuses on a combined heuristics method for determining order quantity under generalized time-varying demands. The independent policy (IP), abnormal independent policy (AIP) and dependent policies are studied and compared. Using the concepts of normal/abnormal periods and the properties of dependent policies, a dependent policy-based heuristics (DPH) is proposed for solving the order quantity problems with a kind of time-varying demands pattern under which the first period is normal. By merging the Silver-Meal (S-M) heuristics and the dependent policy-based heuristics (DPH), a combined heuristics (DPH/S-M) is developed for solving order quantity problems with generalized time-varying demands. The experimentation shows that (1) for the problem with one normal period, no matter which position the normal period stands, the DPH/S-M could not guarantee better than the S-M heuristics, however it is superior to the S-M heuristics in the case that the demands in the abnormal periods are in descending order, and (2) The DPH/S-M is superior to the S-M heuristics for problems with more than one normal period, and the more the number of normal periods, the greater the improvements. 展开更多
关键词 HEURISTICS EOQ time-varying demands inventory management
下载PDF
Optimization method of urban rail train operational plan based on O-D time-varying demand
2
作者 Feng Shi Xian Tu Shuo Zhao 《Railway Sciences》 2022年第1期148-166,共19页
Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of... Purpose–Under the constraints of given passenger service level and coupling travel demand with train departure time,this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.Design/methodology/approach–The authors optimize the train operational plan in a special network layout,i.e.an urban rail corridor with dead-end terminal yard,by decomposing it into two sub-problems:train timetable optimization and rolling stock circulation optimization.As for train timetable optimization,the authors propose a schedule-based passenger flow assignment method,construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm.For the optimization of rolling stock circulation,the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.Findings–The case study shows that the train operational plan developed by the study’s approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.Originality/value–The example verifies the efficiency of the model and algorithm. 展开更多
关键词 Urban rail transit Train operational plan time-varying passenger demand Passenger assignment Passenger service quality
下载PDF
Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands 被引量:6
3
作者 Song Shuai Qian Yongjiu +2 位作者 Liu Jing Xie Xiaorui Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期363-377,共15页
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas... This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them. 展开更多
关键词 system FRAGILITY CHLORIDE corrosion time-varying DEPENDENCE COPULA function probabilistic seismic demand
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
4
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
5
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios
6
作者 Zhishuo Zhang Xinhui Du +3 位作者 Yaoke Shang Jingshu Zhang Wei Zhao Jia Su 《Energy Engineering》 EI 2024年第6期1577-1605,共29页
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ... To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes. 展开更多
关键词 demand response potential demand response scenarios data mining adjustable load evaluation system subjective and objective weight allocation
下载PDF
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
7
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
A Combination Prediction Model for Short Term Travel Demand of Urban Taxi
8
作者 Mingyuan Li Yuanli Gu +1 位作者 Qingqiao Geng Hongru Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期3877-3896,共20页
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th... This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting. 展开更多
关键词 Urban transport taxi travel demand prediction CEEMDAN-ConvLSTM modal components
下载PDF
Time-dependent model for two-phase flow in ultra-high water-cut reservoirs:Time-varying permeability and relative permeability
9
作者 Shao-Chun Wang Na Zhang +3 位作者 Zhi-Hao Tang Xue-Fei Zou Qian Sun Wei Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2536-2553,共18页
For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further agg... For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution. 展开更多
关键词 Mimetic finite difference Water flooding reservoir time-varying physical properties Numerical simulation
下载PDF
Nuclear magnetic resonance experiments on the time-varying law of oil viscosity and wettability in high-multiple waterflooding sandstone cores
10
作者 JIA Hu ZHANG Rui +2 位作者 LUO Xianbo ZHOU Zili YANG Lu 《Petroleum Exploration and Development》 SCIE 2024年第2期394-402,共9页
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por... A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability. 展开更多
关键词 SANDSTONE high-multiple waterflooding nuclear magnetic resonance oil viscosity rock wettability time-varying law
下载PDF
Stochastic programming based coordinated expansion planning of generation,transmission,demand side resources,and energy storage considering the DC transmission system
11
作者 Liang Lu Mingkui Wei +4 位作者 Yuxuan Tao Qing Wang Yuxiao Yang Chuan He Haonan Zhang 《Global Energy Interconnection》 EI CSCD 2024年第1期25-37,共13页
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co... With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations. 展开更多
关键词 Hydro-wind-solar complementary Expansion planning demand response Energy storage system Source-network-demand-storage coordination
下载PDF
Optimal dispatching strategy for residential demand response considering load participation
12
作者 Xiaoyu Zhou Xiaofeng Liu +2 位作者 Huai Liu Zhenya Ji Feng Li 《Global Energy Interconnection》 EI CSCD 2024年第1期38-47,共10页
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio... To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance. 展开更多
关键词 Residential demand response Flexible loads Load participation Load aggregator
下载PDF
Numerical Simulation of Slurry Diffusion in Fractured Rocks Considering a Time-Varying Viscosity
13
作者 Lei Zhu Bin Liu +3 位作者 Xuewei Liu Wei Deng Wenjie Yao Ying Fan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期401-427,共27页
To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and ... To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and a dis-crete element method.Afluid-solid coupling numerical model has been introduced accordingly,and its accuracy has been validated through comparison of theoretical and numerical solutions.For different fracture forms(a single fracture,a branch fracture,and a fracture network),the influence of the time-varying viscosity on the slurry length range has been investigated,considering the change in the fracture aperture.The results show that under different fracture forms and the same grouting process conditions,the influence of the time-varying viscosity on the seepage length is 0.350 m. 展开更多
关键词 time-varying viscosity binghamfluids UDEC numerical simulation grout penetration length aperture
下载PDF
Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method
14
作者 Jingfa Ma Hu Liu Lingxiao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期443-469,共27页
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass... Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling. 展开更多
关键词 demand responsive transit genetic algorithm muti-objective optimization artificial intelligence applications
下载PDF
Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic
15
作者 Shuxin Zhang Jinlei Zhang +3 位作者 Lixing Yang Feng Chen Shukai Li Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期276-296,共21页
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl... Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN. 展开更多
关键词 Short-term origin-destination demand prediction Urban rail transit PANDEMIC Physics-guided deep learning
下载PDF
Adaptive Event-Triggered Time-Varying Output Group Formation Containment Control of Heterogeneous Multiagent Systems
16
作者 Lihong Feng Bonan Huang +2 位作者 Jiayue Sun Qiuye Sun Xiangpeng Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1398-1409,共12页
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number... In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results. 展开更多
关键词 Adaptive control event-triggered mechanisms for-mation containment(FC) heterogeneous multiagent systems time-varying group formation.
下载PDF
Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources
17
作者 Mousumi Basu Chitralekha Jena +1 位作者 Baseem Khan Ahmed Ali 《Energy Engineering》 EI 2024年第4期849-867,共19页
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma... In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions. 展开更多
关键词 MICRO-GRID distributed energy resources demand response program UNCERTAINTY OUTAGE
下载PDF
A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response
18
作者 Wenlu Ji Teng Tu Nan Ma 《Energy Engineering》 EI 2024年第5期1223-1243,共21页
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a... To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost. 展开更多
关键词 Distribution system RESILIENCE defender-attacker-defender distributed generator demand response microgrids formation
下载PDF
Vehicle routing optimization algorithm based on time windows and dynamic demand
19
作者 LI Jun DUAN Yurong +1 位作者 ZHANG Weiwei ZHU Liyuan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期369-378,共10页
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,... To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem. 展开更多
关键词 vehicle routing problem dynamic demand genetic algorithm large-scale neighborhood search time windows
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
20
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部