This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
An improvement of the Peierls equation has been made by including the lattice effects. By using the non-trivially gluing mechanism for the simple cubic lattice, in which atoms interact with its first and second neares...An improvement of the Peierls equation has been made by including the lattice effects. By using the non-trivially gluing mechanism for the simple cubic lattice, in which atoms interact with its first and second nearest neighbours through a central force, the dislocation equation has been derived rigorously for the isotropic case. In the slowly varying approximation, the Peierls equation with the improvement by including the lattice effects has been obtained explicitly. The new equation can be used to substitute for the old one in theoretical investigations of dislocations, The major change of the predicted dislocation structure is in the core region. The width of the dislocation given by using the new equation is about three times that given by the classical Peierls-Nabarro theory for the simple cubic lattice.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer p...We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials.The present work is illustrated with two special cases of the general form:the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.展开更多
We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spec...We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional(3D)TDSE.For XUV pulses,our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes.For pulses of 400 nm or longer wavelengths,we distinguish the multiphoton and tunneling regimes.Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed.The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.展开更多
A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-di...A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones, respectively, thus leading both the time and spatial derivatives to the second-order accuracy. The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift. Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach, respectively, and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor. From comparison of numerical results with theoretical or experimental ones, it is found that they are in reasonable agreement.展开更多
Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm eff...Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this dimculty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R →0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by p(t), i.e., C 〉 0, C = 0, and C 〈0. Following the C's values the spectrum of quantum states is discrete (C 〉 0) or continuous (C ≤ 0).展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<sp...We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.展开更多
Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth ...Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.展开更多
On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion tha...On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.展开更多
We study space-time transformations of the time-dependent Schrodingerequation (TDSE) with time- and position-dependent (effective) mass. We obtain the most generalspace-time transformation that maps such a TDSE onto a...We study space-time transformations of the time-dependent Schrodingerequation (TDSE) with time- and position-dependent (effective) mass. We obtain the most generalspace-time transformation that maps such a TDSE onto another one of its kind. The transformedpotential is given in explicit form.展开更多
We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by com...We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by combining constructing block diagonal matrices through using the real space product formula(RSPF) with splitting out diagonal sub-matrices for short iterative Lanczos(SIL) propagator. The numerical implementation of the solver guarantees efficient parallel computing for the simulation of real physical problems such as high harmonic generation(HHG) in these interaction systems.展开更多
A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-n...A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.展开更多
In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simpl...In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.展开更多
In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^...In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.展开更多
In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. Th...In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .展开更多
For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we d...For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equation of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so simple and is based on the simultaneous differential equations including no terms related to self-energies, computer programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamiltonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite temperature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equation of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Finally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential as small as 10 meV strongly influences the neutralization of ion.展开更多
In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation i...In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.展开更多
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274057).
文摘An improvement of the Peierls equation has been made by including the lattice effects. By using the non-trivially gluing mechanism for the simple cubic lattice, in which atoms interact with its first and second nearest neighbours through a central force, the dislocation equation has been derived rigorously for the isotropic case. In the slowly varying approximation, the Peierls equation with the improvement by including the lattice effects has been obtained explicitly. The new equation can be used to substitute for the old one in theoretical investigations of dislocations, The major change of the predicted dislocation structure is in the core region. The width of the dislocation given by using the new equation is about three times that given by the classical Peierls-Nabarro theory for the simple cubic lattice.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
文摘We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schr¨odinger equation,the Feinberg–Horodecki equation,with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials.The present work is illustrated with two special cases of the general form:the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
基金Project supported by the National Natural Science Foundation of China(Gant Nos.12074265,11804233,and 11575118)the National Key Research and Development Project of China(Grant No.2017YFF0106500)+1 种基金the Natural Science Foundation of Guangdong,China(Grant Nos.2018A0303130311 and 2021A1515010082)the Shenzhen Fundamental Research Program(Grant Nos.KQJSCX20180328093801773,JCYJ20180305124540632,and JCYJ20190808121405740).
文摘We develop a numerical scheme for solving the one-dimensional(1D)time-dependent Schrödinger equation(TDSE),and use it to study the strong-field photoionization of the atomic hydrogen.The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional(3D)TDSE.For XUV pulses,our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes.For pulses of 400 nm or longer wavelengths,we distinguish the multiphoton and tunneling regimes.Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed.The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.
基金This work wasjointlysupported by the National Natural Science Foundation of China(Grant No.40106008) the National Natural Science Fundfor Distinguished Young Scholars(Grant No.40225014)
文摘A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones, respectively, thus leading both the time and spatial derivatives to the second-order accuracy. The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift. Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach, respectively, and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor. From comparison of numerical results with theoretical or experimental ones, it is found that they are in reasonable agreement.
文摘Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov-Bohm effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function θ(r - R). Consequently, the problem becomes more complicated. In order to avoid this dimculty, we replace the radius R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R →0. The qualitative properties for the invariant operator spectrum are described separately for the different values of the parameter C appearing in the nonlinear auxiliary equation satisfied by p(t), i.e., C 〉 0, C = 0, and C 〈0. Following the C's values the spectrum of quantum states is discrete (C 〉 0) or continuous (C ≤ 0).
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
文摘We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.
基金the National Natural Science Foundation of China(Grant Nos.12074265 and 11804233).
文摘Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.
基金supported by the Meteorological Special Project of China(GYHY200806005)the National Natural Sciences Foundation of China(40805028,40675039,40575036)the Key Technologies R&D Program of China(2009BAC51B04)
文摘On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.
文摘We study space-time transformations of the time-dependent Schrodingerequation (TDSE) with time- and position-dependent (effective) mass. We obtain the most generalspace-time transformation that maps such a TDSE onto another one of its kind. The transformedpotential is given in explicit form.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534004,11627807,11774131,and 11774130)the Scientific and Technological Project of Jilin Provincial Education Department in the Thirteenth Five-Year Plan,China(Grant No.JJKH20170538KJ)
文摘We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by combining constructing block diagonal matrices through using the real space product formula(RSPF) with splitting out diagonal sub-matrices for short iterative Lanczos(SIL) propagator. The numerical implementation of the solver guarantees efficient parallel computing for the simulation of real physical problems such as high harmonic generation(HHG) in these interaction systems.
基金the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo,China(Grant Nos.2012A610152 and 2012A610038)the K.C.Wong Magna Fund in Ningbo University,Chinathe Research Grant Council,Government of the Hong Kong Administrative Region,China(Grant Nos.CityU9041370 and CityU9041499)
文摘A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.
基金Open Fund of Key Laboratory of Coastal Disasters and Defence (Ministry of Education)National Natural Science Foundation of China under contract No. 50779015
文摘In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.
基金S.Geng's research was supported in part by the National Natural Science Foundation of China(12071397)Excellent Youth Project of Hunan Education Department(21B0165)+1 种基金F.Huang's research was supported in part by the National Key R&D Program of China 2021YFA1000800the National Natural Science Foundation of China(12288201).
文摘In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.
文摘In this paper, the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables. The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing. This result is of practical importance when the realistic experimental conditions are taken into consideration .
文摘For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equation of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so simple and is based on the simultaneous differential equations including no terms related to self-energies, computer programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamiltonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite temperature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equation of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Finally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential as small as 10 meV strongly influences the neutralization of ion.
文摘In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.