Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of...For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.展开更多
This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface...This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface Green functions are treated as a special case, and the explicit expressions of displacements and hoop stress at the parabolic boundary are also given. Finally, the stresses and displacements induced by a phonon line force acting at the origin of the lower half-space are presented.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicry...Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
Urbanization has profound impacts on ecological environments. Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecological balance and enhancing sustainability. This study a...Urbanization has profound impacts on ecological environments. Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecological balance and enhancing sustainability. This study aimed to investigate the community composition characteristics of butterflies in urban green spaces within the context of rapid urbanization. Simultaneously, it explored the status and differences in butterfly taxonomic diversity, functional diversity, and functional traits among different types of urban green spaces, regions, and urban gradients to provide relevant insights for further improving urban green space quality and promoting biodiversity conservation. We conducted a year-long survey of 80 green spaces across different urban regions and ring roads within Hefei City, Anhui Province, with monthly sampling intervals over 187 transects. A total of 4822 butterflies, belonging to 5 families, 17 subfamilies, 40 genera, and 55 species were identified. The species richness, Shannon, Simpson, functional richness, and Rao's quadratic entropy indices of butterflies in urban park green spaces were all significantly higher than those in residential and street green spaces(P < 0.05). Differences in butterfly diversity and functional traits among different urban regions and ring roads were relatively minor, and small-sized, multivoltine, and long flying duration butterflies dominated urban green spaces. Overall, these spaces offer more favorable habitats for butterflies. However, some residential green spaces and street green spaces demonstrate potential for butterfly conservation.展开更多
Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics,...Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.展开更多
Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple ...Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple datasets to explore the effects of land-scape patterns and natural environments on the functional diversity of birds in urban parks and campuses in the eastern and northwest-ern regions of China.Firstly,we used the data to calculate birds of the functional richness(FRic),functional evenness(FEve),and functional divergence(FDiv)of 68 urban spaces in the eastern and northwestern regions of China.Further,we established generalized linear models of natural factors,human factors,and functional diversity.Results showed more bird species with unique traits were in the north-western region.This may be because the earlier urbanization in the eastern region filtered out urban-sensitive species,leaving behind urban adapters.Moreover,we found that the fractal dimension index was the most significant positive factor of FRic in the eastern region but the most significant negative factor of FDiv.Elevation was the most significant negative influence factor of FEve in the eastern region,but it was the most potent positive influence factor of FRic in the northwestern region.Population density had a significant positive effect on FDiv in the northwestern region.However,green space areas significantly negatively impacted FEve in the northwestern region.In addition,birds in parks in both regions had more functional traits than those on campuses,possibly because of the larger green space in parks,which may contain more fragments of native vegetation and reduce human interference.Our study suggests that preserving more original vegetation and reducing human disturbance in cities can increase the functional diversity of urban birds and im-prove urban ecosystem functions.展开更多
By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the res...By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ...This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].展开更多
In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general soluti...In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.展开更多
Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for ...Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for point forces and point charge loaded in the fluid and piezoelectric bimaterials are studied in this paper. Based on the 3D general solutions expressed by harmonic functions, we constructed the suitable harmonic functions with undetermined constants at first. Then, the couple field in the fluid and piezoelectric bimaterials can be derived by substitution of harmonic functions into general solutions. These constants can be obtained by virtue of the compatibility, boundary, and equilibrium conditions. At last, the characteristics of the electromechanical coupled fields are shown by numerical results.展开更多
Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot...Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.展开更多
An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb...An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CDSN) are deconvolved for the source time functions by the correspondent0 recordings of the three aftershocks asempirical Green's functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) Obtained are nearly identical. The RSTFs suggest the Ms= 6. 9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about & s. COmParing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from p-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-Period way form data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of the Ms= 6. 0 event on Jan. 3, 1994 and the Ms= 5. 7 event on Feb. 16,1994 are quite simple, both RSTFs are single impulses.The RSTFs of the Ms= 6. 9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aftershocks are compared. The relative scalar seismic moment Of the three aftershocks deduced from the relative scalar seismic moments of the Ms=6. 9 main shock are very close to those inverted directly from the EGF deconvolution. The relative scalar seismic moment of the Ms =6. 9 main shock calculated using the three aftershocks as EGF are 22 (the Ms= 6. 0 aftershock being EGF), 26 (the Ms= 5. 7 aftershock being EGF) and 66 (the Ms= 5. 5 aftershock being EGF), respectively. Deducingfrom those results, the relative scalar sesimic moments of the Ms= 6. 0 to the Ms= 5. 7 events, the Ms= 6. 0 tothe Ms= 5. 5 events and the Ms= 5. 7 to the Ms= 5. 5 events are 1. 18, 3. 00 and 2. 54, respectively. The correspondent relative scalar seismic moments calculated directly from the waveform recordings are 1. 15, 3. 43, and 3. 05.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results d...Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.展开更多
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
文摘For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
文摘This investigation presents the Green functions for a decagonal quasicrystalline ma- terial with a parabolic boundary subject to a line force and a line dislocation by means of the complex variable method. The surface Green functions are treated as a special case, and the explicit expressions of displacements and hoop stress at the parabolic boundary are also given. Finally, the stresses and displacements induced by a phonon line force acting at the origin of the lower half-space are presented.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金Project supported by Shanghai Leading Academic Discipline Project (No.Y0103).
文摘Quasicrystals have additional phason degrees of freedom not found in conventional crystals. In this paper, we present an exact solution for time-harmonic dynamic Green's function of one-dimensional hexagonal quasicrystals with the Laue classes 6/mh and 6/mhmm. Through the introduction of two new functions φ and ψ, the original problem is reduced to the determination of Green's functions for two independent Helmholtz equations. The explicit expressions of displacement and stress fields are presented and their asymptotic behaviors are discussed. The static Green's function can be obtained by letting the circular frequency approach zero.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
基金funded by the National Non Profit Research Institutions of the Chinese Academy of Forestry(CAFYBB2020ZB008)National Natural Science Foundation of China(32371936)the Research Projects in Anhui Universities in 2022(natural sciences)(2022AH051874).
文摘Urbanization has profound impacts on ecological environments. Green spaces are a vital component of urban ecosystems and play a crucial role in maintaining ecological balance and enhancing sustainability. This study aimed to investigate the community composition characteristics of butterflies in urban green spaces within the context of rapid urbanization. Simultaneously, it explored the status and differences in butterfly taxonomic diversity, functional diversity, and functional traits among different types of urban green spaces, regions, and urban gradients to provide relevant insights for further improving urban green space quality and promoting biodiversity conservation. We conducted a year-long survey of 80 green spaces across different urban regions and ring roads within Hefei City, Anhui Province, with monthly sampling intervals over 187 transects. A total of 4822 butterflies, belonging to 5 families, 17 subfamilies, 40 genera, and 55 species were identified. The species richness, Shannon, Simpson, functional richness, and Rao's quadratic entropy indices of butterflies in urban park green spaces were all significantly higher than those in residential and street green spaces(P < 0.05). Differences in butterfly diversity and functional traits among different urban regions and ring roads were relatively minor, and small-sized, multivoltine, and long flying duration butterflies dominated urban green spaces. Overall, these spaces offer more favorable habitats for butterflies. However, some residential green spaces and street green spaces demonstrate potential for butterfly conservation.
基金Project supported by the National Natural Science Foundation of China(Nos.51478435,11402150,and 11172268)
文摘Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.
基金Under the auspices of the Innovation Program of Chinese Academy of Agricultural Sciences(No.CAAS-STNY-2024)。
文摘Urbanization often changes bird species richness and affects the functional diversity.Therefore,understanding these changes helps city planners improve green space design and land use planning.Our study used multiple datasets to explore the effects of land-scape patterns and natural environments on the functional diversity of birds in urban parks and campuses in the eastern and northwest-ern regions of China.Firstly,we used the data to calculate birds of the functional richness(FRic),functional evenness(FEve),and functional divergence(FDiv)of 68 urban spaces in the eastern and northwestern regions of China.Further,we established generalized linear models of natural factors,human factors,and functional diversity.Results showed more bird species with unique traits were in the north-western region.This may be because the earlier urbanization in the eastern region filtered out urban-sensitive species,leaving behind urban adapters.Moreover,we found that the fractal dimension index was the most significant positive factor of FRic in the eastern region but the most significant negative factor of FDiv.Elevation was the most significant negative influence factor of FEve in the eastern region,but it was the most potent positive influence factor of FRic in the northwestern region.Population density had a significant positive effect on FDiv in the northwestern region.However,green space areas significantly negatively impacted FEve in the northwestern region.In addition,birds in parks in both regions had more functional traits than those on campuses,possibly because of the larger green space in parks,which may contain more fragments of native vegetation and reduce human interference.Our study suggests that preserving more original vegetation and reducing human disturbance in cities can increase the functional diversity of urban birds and im-prove urban ecosystem functions.
基金supported by the National Natural Science Foundation of China(No.11172268)
文摘By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u^r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11934020)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).
文摘This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].
基金the National Natural Science Foundation of China(Nos.11972365 and 12102458)。
文摘In this paper,we obtain Green’s functions of two-dimensional(2D)piezoelectric quasicrystal(PQC)in half-space and bimaterials.Based on the elastic theory of QCs,the Stroh formalism is used to derive the general solutions of displacements and stresses.Then,we obtain the analytical solutions of half-space and bimaterial Green’s functions.Besides,the interfacial Green’s function for bimaterials is also obtained in the analytical form.Before numerical studies,a comparative study is carried out to validate the present solutions.Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force,the line dislocation,the line charge,and the phason line force.As a result,the coupling effect among the phonon field,the phason field,and the electric field is prominent,and the butterfly-shaped contours are characteristic in 2D PQCs.In addition,the changes of material parameters cause variations in physical quantities to a certain degree.
基金financial support from the National Natural Science Foundation of China(11572119)
文摘Because most piezoelectric devices have interfaces with fluid in engineering, it is valuable to study the coupled field between fluid and piezoelectric media. As the fundamental problem, the 3D Green's functions for point forces and point charge loaded in the fluid and piezoelectric bimaterials are studied in this paper. Based on the 3D general solutions expressed by harmonic functions, we constructed the suitable harmonic functions with undetermined constants at first. Then, the couple field in the fluid and piezoelectric bimaterials can be derived by substitution of harmonic functions into general solutions. These constants can be obtained by virtue of the compatibility, boundary, and equilibrium conditions. At last, the characteristics of the electromechanical coupled fields are shown by numerical results.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Few studies of wave propagation in layered saturated soils have been reported in the literature.In this paper,a general solution of the equation of wave motion in saturated soils,based on one kind of practical Blot's equation, was deduced by introducing wave potentials.Then exact dynamic-stiffness matrices for a poroelastic soil layer and half- space were derived,which extended Wolf's theory for an elastic layered site to the case of poroelasticity,thus resolving a fundamental problem in the field of wave propagation and soil-structure interaction in a poroelastic layered soil site.By using the integral transform method,Green's functions of horizontal and vertical uniformly distributed loads in a poroelastic layered soil site were given.Finally,the theory was verified by numerical examples and dynamic responses by comparing three different soil sites.This study has the following advantages:all parameters in the dynamic-stiffness matrices have explicitly physical meanings and the thickness of the sub-layers does not affect the precision of the calculation which is very convenient for engineering applications.The present theory can degenerate into Wolf's theory and yields numerical results approaching those for an ideal elastic layered site when porosity tends to zero.
文摘An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CDSN) are deconvolved for the source time functions by the correspondent0 recordings of the three aftershocks asempirical Green's functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) Obtained are nearly identical. The RSTFs suggest the Ms= 6. 9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about & s. COmParing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from p-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-Period way form data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of the Ms= 6. 0 event on Jan. 3, 1994 and the Ms= 5. 7 event on Feb. 16,1994 are quite simple, both RSTFs are single impulses.The RSTFs of the Ms= 6. 9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aftershocks are compared. The relative scalar seismic moment Of the three aftershocks deduced from the relative scalar seismic moments of the Ms=6. 9 main shock are very close to those inverted directly from the EGF deconvolution. The relative scalar seismic moment of the Ms =6. 9 main shock calculated using the three aftershocks as EGF are 22 (the Ms= 6. 0 aftershock being EGF), 26 (the Ms= 5. 7 aftershock being EGF) and 66 (the Ms= 5. 5 aftershock being EGF), respectively. Deducingfrom those results, the relative scalar sesimic moments of the Ms= 6. 0 to the Ms= 5. 7 events, the Ms= 6. 0 tothe Ms= 5. 5 events and the Ms= 5. 7 to the Ms= 5. 5 events are 1. 18, 3. 00 and 2. 54, respectively. The correspondent relative scalar seismic moments calculated directly from the waveform recordings are 1. 15, 3. 43, and 3. 05.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.