The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency co...The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency component,which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly.In this paper,a time-domain protection for connected to wind power plant based on model matching is proposed,which compares the calculated current and the measured current to identify internal faults and external faults.Under external faults,the calculated current and measured current waveform are quite similar because the protected transmission lines is equivalent to a lumped parameter model and the model itself is not damaged.However,the similarity of calculated current and measured current is quite low,due to destroyed integrity of model under internal faults.Additionally,Hausdorff distance is introduced to obtain the similarity of the calculated current and measured current.Since the proposed protection scheme is applied in time domain,it is independent from current frequency offsets of wind energy system,high-order harmonics,and system impedance variations.Comprehensive case studies are undertaken through Power Systems Computer Aided Design(PSCAD),while simulation results verify the accuracy and efficiency of the proposed approach in fault identification.展开更多
An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic pro...An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.展开更多
In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional me...In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.展开更多
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spheric...A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.展开更多
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic dat...Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.展开更多
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr...The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.展开更多
With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electro...With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.展开更多
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ...Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.展开更多
基金This paper is supported in part by the National Natural Science Foundations of China under Grant Nos.51977102 and 51807084.
文摘The system impedance instability,high-order harmonics,and frequency offset are main fault characteristics of wind power system.Moreover,the measurement angle of faulty phase is affected by rotation speed frequency component,which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly.In this paper,a time-domain protection for connected to wind power plant based on model matching is proposed,which compares the calculated current and the measured current to identify internal faults and external faults.Under external faults,the calculated current and measured current waveform are quite similar because the protected transmission lines is equivalent to a lumped parameter model and the model itself is not damaged.However,the similarity of calculated current and measured current is quite low,due to destroyed integrity of model under internal faults.Additionally,Hausdorff distance is introduced to obtain the similarity of the calculated current and measured current.Since the proposed protection scheme is applied in time domain,it is independent from current frequency offsets of wind energy system,high-order harmonics,and system impedance variations.Comprehensive case studies are undertaken through Power Systems Computer Aided Design(PSCAD),while simulation results verify the accuracy and efficiency of the proposed approach in fault identification.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘An approach of source range estimation in an ocean environment with sloping bottom is presented. The approach is based on pulse waveform correlation matching between the received and simulated signals. An acoustic prop- agation experiment is carried out in a slope environment. The pulse signal is received by the vertical line array, and the depth structure can be obtained. For the experimental data, the depth structures of pulse waveforms are different, which depends on the source range. For a source with unknown range, the depth structure of pulse waveform can be first obtained from the experimental data. Next, the depth structures of pulse waveforms in dif- ferent ranges are numerically calculated. After the process of correlating the experimental and simulated signals, the range corresponding to the maximum value of the correlation coefficient is the estimated source range. For the explosive sources in the experiment with two depths, the mean relative errors of range estimation are both less than 7%.
基金funding support from Grant-in-Aid for Scientific Research(Grant No.19H00722)by Japan Society for the Promotion of Science(JSPS)。
文摘In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61301063 and 41305017)
文摘A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
基金sponsored by the Natural Science Foundation of China(No.41074075)Graduate Innovation Fund by Jilin University(No.20121070)
文摘Greater attention has been paid to vintage-merge processing of seismic data and extracting more valuable information by the geophysicist. A match filter is used within many important areas such as splicing seismic data, matching seismic data with different ages and sources, 4-D seismic monitoring, and so on. The traditional match filtering method is subject to many restrictions and is usually difficult to overcome the impact of noise. Based on the traditional match filter, we propose the wavelet domain L1 norm optimal matching filter. In this paper, two different types of seismic data are decomposed to the wavelet domain, different detailed effective information is extracted for Ll-norm optimal matching, and ideal results are achieved. Based on the model test, we find that the L1 norm optimal matching filter attenuates the noise and the waveform, amplitude, and phase coherence of result signals are better than the conventional method. The field data test shows that, with our method, the seismic events in the filter results have better continuity which achieves the high precision seismic match requirements.
基金Project(41174061) supported by the National Natural Science Foundation of ChinaProject(2011QNZT011) supported by the Free Exploration Program of Central South University,China
文摘The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR.
基金supported by National High Technology Research and Development Program of China(863 Program)(No.2015AA050104)National Natural Science Foundation of China(No.51577068)
文摘With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.
文摘Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.