In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi...Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.展开更多
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-...This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method.展开更多
In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional...In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.展开更多
The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models...The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a spa...In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.展开更多
In this paper,we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation,and then develop an optimal Galerkin finite element scheme without any regularity ass...In this paper,we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation,and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution.We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t=0.More precisely,we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C 2([0,T])in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness,otherwise the solution exhibits the same singular behavior like its constant-order counterpart.Based on these regularity results,we prove optimalorder convergence rate of the Galerkin finite element scheme.Furthermore,we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives.Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme.展开更多
In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is e...In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h^2)of EQ1^rot element (see Lemma 2.3). Then, by using the proved character of EQ1^rot element, we present the superconvergent estimates for the original variable u in the broken H^1-norm and the flux →p =△u in the (L^2)^2-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.展开更多
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e...In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.展开更多
Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations ...Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.展开更多
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion par...In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion parameter δ are presented,and for the corresponding computation schemes the stability and error estimates in suitable norms are estabilished.展开更多
This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinv...This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.展开更多
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution ...The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.展开更多
In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explai...In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.展开更多
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundation of Ningbo City,China(GrantNo.2013A610103)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090131)the Disciplinary Project of Ningbo City,China(GrantNo.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.
基金supported by the Natural and Science Foundation Council of China(11771059)Hunan Provincial Natural Science Foundation of China(2018JJ3519)Scientific Research Project of Hunan Provincial office of Education(20A022)。
文摘This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11961044)the Doctor Fund of Lan Zhou University of Technologythe Natural Science Foundation of Gansu Provice(21JR7RA214)。
文摘In this paper,we consider the inverse problem for identifying the source term of the time-fractional equation with a hyper-Bessel operator.First,we prove that this inverse problem is ill-posed,and give the conditional stability.Then,we give the optimal error bound for this inverse problem.Next,we use the fractional Tikhonov regularization method and the fractional Landweber iterative regularization method to restore the stability of the ill-posed problem,and give corresponding error estimates under different regularization parameter selection rules.Finally,we verify the effectiveness of the method through numerical examples.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51134018).
文摘The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way. Some diffusion models with fractional derivatives are investigated analytically, and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金supported by National Science Foundation of China No.11171305 and No.91230203 and the work of X.Lu is partially supported by National Science Foundation of China No.11471253,the Fundamental Research Funds for the Central Universities(13lgzd07)and the PSTNS of Zhu Jiang in Guangzhou city(2011J2200099).
文摘In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.
基金the National Natural Science Foundation of China(No.11971482)the Natural Science Foundation of Shandong Province(No.ZR2017MA006)+2 种基金the National Science Foundation(No.DMS-1620194)the China Postdoctoral Science Foundation(Nos.2020M681136,2021TQ0017,2021T140129)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210019).
文摘In this paper,we study the well-posedness and solution regularity of a multi-term variable-order time-fractional diffusion equation,and then develop an optimal Galerkin finite element scheme without any regularity assumption on its true solution.We show that the solution regularity of the considered problem can be affected by the maximum value of variable-order at initial time t=0.More precisely,we prove that the solution to the multi-term variable-order time-fractional diffusion equation belongs to C 2([0,T])in time provided that the maximum value has an integer limit near the initial time and the data has sufficient smoothness,otherwise the solution exhibits the same singular behavior like its constant-order counterpart.Based on these regularity results,we prove optimalorder convergence rate of the Galerkin finite element scheme.Furthermore,we develop an efficient parallel-in-time algorithm to reduce the computational costs of the evaluation of multi-term variable-order fractional derivatives.Numerical experiments are put forward to verify the theoretical findings and to demonstrate the efficiency of the proposed scheme.
基金the National Natural Science Foundation of China (No. 1167136911271340).
文摘In this paper, a fully discrete scheme based on the LI approximation in temporal direction for the fractional derivative of order in (0,1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h^2)of EQ1^rot element (see Lemma 2.3). Then, by using the proved character of EQ1^rot element, we present the superconvergent estimates for the original variable u in the broken H^1-norm and the flux →p =△u in the (L^2)^2-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.
文摘In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation.
文摘Innovative definitions of the electric and magnetic diffusivities through conducting mediums and innovative diffusion equations of the electric charges and magnetic flux are verified in this article. Such innovations depend on the analogy of the governing laws of diffusion of the thermal, electrical, and magnetic energies and newly defined natures of the electric charges and magnetic flux as energy, or as electromagnetic waves, that have electric and magnetic potentials. The introduced diffusion equations of the electric charges and magnetic flux involve Laplacian operator and the introduced diffusivities. Both equations are applied to determine the electric and magnetic fields in conductors as the heat diffusion equation which is applied to determine the thermal field in steady and unsteady heat diffusion conditions. The use of electric networks for experimental modeling of thermal networks represents sufficient proof of similarity of the diffusion equations of both fields. By analysis of the diffusion phenomena of the three considered modes of energy transfer;the rates of flow of these energies are found to be directly proportional to the gradient of their volumetric concentration, or density, and the proportionality constants in such relations are the diffusivity of each energy. Such analysis leads also to find proportionality relations between the potentials of such energies and their volumetric concentrations. Validity of the introduced diffusion equations is verified by correspondence their solutions to the measurement results of the electric and magnetic fields in microwave ovens.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
基金Supported by the National Natural Sciences Foundation of China(1 8971 0 51 )
文摘In this paper,a streamline diffusion F.E.M. for linear Sobolev equations with convection dominated term is given.According to the range of space time F.E mesh parameter h ,two choices for artifical diffusion parameter δ are presented,and for the corresponding computation schemes the stability and error estimates in suitable norms are estabilished.
基金Supported by National Natural Science Foundation of China under Grant No.60641006the National Science Foundation of Shandong Province under Grant No.Y2007A06
文摘This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
基金This work was supported by the National Science Foundation of China(10271034)
文摘The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.
基金Supported by the National Natural Science Foundation of China(Grant No.11471253 and No.11571311)
文摘In this paper,we consider a Cauchy problem of the time fractional diffusion equation(TFDE)in x∈[0,L].This problem is ubiquitous in science and engineering applications.The illposedness of the Cauchy problem is explained by its solution in frequency domain.Furthermore,the problem is formulated into a minimization problem with a modified Tikhonov regularization method.The gradient of the regularization functional based on an adjoint problem is deduced and the standard conjugate gradient method is presented for solving the minimization problem.The error estimates for the regularized solutions are obtained under Hp norm priori bound assumptions.Finally,numerical examples illustrate the effectiveness of the proposed method.