The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time...The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforeh...The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforehand.This was first systematically implemented by the empirical mode decomposition(EMD)in the Hilbert-Huang transform,which can provide a time-frequency representation of the signals.The EMD,however,has limitations in distinguishing different components in narrowband signals commonly found in free-decay vibration signals.In this study,a technique for decompo- sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD,in which the time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating,the order of component ex- traction is reversed from that in the EMD and the end effect is confined.The proposed technique is verified by performing the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge structure.In addition,the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated time-variant MDOF system.展开更多
Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency comp...Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.展开更多
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ...A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.展开更多
A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non...A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non-stationary signal decomposition treatment, and uses the Wigner-Ville distribution(WVD) analysis for signal reconstruction. The method presented in this study can effectively resolves the time and frequency resolution issue for non-stationary signal analysis and the cross-term issue typically encountered in time-frequency analysis.The feasibility and accuracy of the proposed method are evaluated and verified in a numerical simulation.展开更多
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals...The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method.展开更多
In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from def...In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines.展开更多
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(2011ZX05005–005-008HZ and 2011ZX05006-002)
文摘The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
文摘The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforehand.This was first systematically implemented by the empirical mode decomposition(EMD)in the Hilbert-Huang transform,which can provide a time-frequency representation of the signals.The EMD,however,has limitations in distinguishing different components in narrowband signals commonly found in free-decay vibration signals.In this study,a technique for decompo- sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD,in which the time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating,the order of component ex- traction is reversed from that in the EMD and the end effect is confined.The proposed technique is verified by performing the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge structure.In addition,the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated time-variant MDOF system.
文摘Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.
文摘A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.
基金the National Natural Science Foundation of China(No.61271387)the Shandong Provincial Government’s Taishan Scholar Program
文摘A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non-stationary signal decomposition treatment, and uses the Wigner-Ville distribution(WVD) analysis for signal reconstruction. The method presented in this study can effectively resolves the time and frequency resolution issue for non-stationary signal analysis and the cross-term issue typically encountered in time-frequency analysis.The feasibility and accuracy of the proposed method are evaluated and verified in a numerical simulation.
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金supported by the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology(No.PLC201402)National Nature Science Foundation of China(No.U1562111)
文摘The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method.
基金Project (No. 2001AA602021) supported by the Hi-Tech Researchand Development Program (863) of China
文摘In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines.