期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Application of sparse time-frequency decomposition to seismic data 被引量:3
1
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
2
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform Wavelet Packet decomposition time-frequency analysis Non-Stationary Signals
下载PDF
A technique to improve the empirical mode decomposition in the Hilbert-Huang transform 被引量:5
3
作者 陈扬波 冯青 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期75-86,共12页
The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforeh... The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforehand.This was first systematically implemented by the empirical mode decomposition(EMD)in the Hilbert-Huang transform,which can provide a time-frequency representation of the signals.The EMD,however,has limitations in distinguishing different components in narrowband signals commonly found in free-decay vibration signals.In this study,a technique for decompo- sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD,in which the time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating,the order of component ex- traction is reversed from that in the EMD and the end effect is confined.The proposed technique is verified by performing the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge structure.In addition,the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated time-variant MDOF system. 展开更多
关键词 time-frequency analysis Hilbert-Huang transform component decomposition
下载PDF
Study of seismic spectrum decomposition based on CEEMD 被引量:3
4
作者 LIU Shuang HAN Liguo 《Global Geology》 2014年第2期120-126,共7页
Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency comp... Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data. 展开更多
关键词 EMD spectrum decomposition time-frequency analysis
下载PDF
Segmented second algorithm of empirical mode decomposition
5
作者 张敏聪 朱开玉 李从心 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期444-449,共6页
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ... A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals. 展开更多
关键词 segmented second empirical mode decomposition (EMD) algorithm time-frequency analysis intrinsic mode functions (IMF) first-level decomposition
下载PDF
Simulation Study on Multi-Rate Time-Frequency Analysis of Non-Stationary Signals
6
作者 LIN Haibo GAO Zhibin +1 位作者 YI Chuijie LIN Tianran 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第6期798-802,共5页
A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non... A new time-frequency analysis method is proposed in this study using a multi-rate signal decomposition technique for the analysis of non-stationary signals. The method uses a multi-rate filter bank for an improved non-stationary signal decomposition treatment, and uses the Wigner-Ville distribution(WVD) analysis for signal reconstruction. The method presented in this study can effectively resolves the time and frequency resolution issue for non-stationary signal analysis and the cross-term issue typically encountered in time-frequency analysis.The feasibility and accuracy of the proposed method are evaluated and verified in a numerical simulation. 展开更多
关键词 NON-STATIONARY SIGNALS time-frequency analysis MULTI-RATE decomposition Wigner-Ville distribution (WVD)
原文传递
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
7
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom Time-shear Adaptive signal decomposition time-frequency distribution.
下载PDF
Fractional S-transform-part 2:Application to reservoir prediction and fluid identification
8
作者 杜正聪 胥德平 张金明 《Applied Geophysics》 SCIE CSCD 2016年第2期343-352,419,共11页
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals... The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method. 展开更多
关键词 fractional S-transform FASTICA fractional time-frequency analysis spectral decomposition
下载PDF
自适应旋转投影分解法 被引量:40
9
作者 殷勤业 倪志芳 +1 位作者 钱世锷 陈大庞 《电子学报》 EI CAS CSCD 北大核心 1997年第4期52-58,共7页
本文提出了一种新的时一频分解方法──自适应旋转投影分解法(AOP法).在表征信号空间的线性调频高斯信号集上,我们针对原始信号自适应地搜索出一组与信号匹配最好的基函数序列.以此用尽可能少的基函数来重构信号子空间.根据分... 本文提出了一种新的时一频分解方法──自适应旋转投影分解法(AOP法).在表征信号空间的线性调频高斯信号集上,我们针对原始信号自适应地搜索出一组与信号匹配最好的基函数序列.以此用尽可能少的基函数来重构信号子空间.根据分解系数,得到信号的时-频能量分布.由于调频高斯信号时频会聚性能极佳,又能灵活高效地匹配各类信号,该算法不论从分辨率、效率还是描述能力等方面都具有良好的性能.将它用于语音压缩也取得了很好的结果. 展开更多
关键词 时频分析 投影分析 APO分解 信号处理
下载PDF
基于自适应定向正交投影分解的图象分割方法 被引量:15
10
作者 傅弘 阎鸿森 齐春 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第3期286-291,共6页
将目标和背景分别对应到灰度直方图中的两个高斯分布是进行图象分割的一种常用方法 ,但复杂图象的直方图往往是多峰的 .为了更好地拟合这种复杂图象直方图的多峰特性 ,提出了一种基于自适应定向正交投影分解的图象分割方法 .该方法首先... 将目标和背景分别对应到灰度直方图中的两个高斯分布是进行图象分割的一种常用方法 ,但复杂图象的直方图往往是多峰的 .为了更好地拟合这种复杂图象直方图的多峰特性 ,提出了一种基于自适应定向正交投影分解的图象分割方法 .该方法首先将这种复杂图象的直方图看作是多个高斯分布的叠加 ,并可通过应用自适应定向正交投影分解法来快速准确地确定每个高斯分布的权值、均值和方差 ,进而计算出各相邻高斯分布之间的最优阈值 ,以用于图象分割 .在此基础上 ,又提出了阈值分离度的概念 ,并将其作为选取最终阈值的指标 .应用实例结果表明 ,该方法能够快速有效地实现复杂图象的多阈值分割 . 展开更多
关键词 自适应定向正交投影分解法 图象分割 高斯分布 阈值分离度 计算机视觉
下载PDF
基于数据融合的人脸识别方法 被引量:2
11
作者 刘冬梅 吕明磊 曾智勇 《计算机工程》 CAS CSCD 2013年第10期192-195,199,共5页
考虑人脸表情、光照变化和姿态对人脸识别性能的影响,提出一种基于数据融合的人脸识别方法。应用二维离散小波变换对人脸图像进行3次小波分解,使每幅人脸图像得到1幅低频子图和9幅高频子图,低频子图可以直接代表人脸的本质,而部分高频... 考虑人脸表情、光照变化和姿态对人脸识别性能的影响,提出一种基于数据融合的人脸识别方法。应用二维离散小波变换对人脸图像进行3次小波分解,使每幅人脸图像得到1幅低频子图和9幅高频子图,低频子图可以直接代表人脸的本质,而部分高频子图仍含有鉴别信息,因此,利用Fisher投影对得到的高频子图进行投影,选取出包含鉴别信息较多的高频子图,并设计3种数据融合方案。分别在数据级、特征级和决策级实现融合处理,并在ORL和YALE A人脸库上完成实验,结果表明,与主成分分析法和小波变换人脸识别方法相比,该方法能有效提高识别率。 展开更多
关键词 人脸识别 数据融合 小波分解 Fisher投影 子空间分析 特征提取
下载PDF
SVD与LDA相结合的人脸特征提取方法 被引量:3
12
作者 郭志强 杨杰 《计算机工程与设计》 CSCD 北大核心 2009年第22期5133-5135,5139,共4页
提出一种新的SVD与LDA相结合的人脸特征提取方法。首先选用练训样本的均值图像作为标准图像,把训练样本投影到标准图像经奇异值分解产生的基空间中,其次提取投影系数矩阵左上角信息作为初步特征,最后再采用LDA分析方法降维提取最终的特... 提出一种新的SVD与LDA相结合的人脸特征提取方法。首先选用练训样本的均值图像作为标准图像,把训练样本投影到标准图像经奇异值分解产生的基空间中,其次提取投影系数矩阵左上角信息作为初步特征,最后再采用LDA分析方法降维提取最终的特征。该方法解决了奇异值分解用于人脸识别基空间不一致的固有缺陷,同时又增加的特征的类别信息,也避免了LDA的小样本问题。在ORL与CAS-PEAL人脸库的实验结果表明了该方法的有效性,同时对光照有一定的鲁棒性。 展开更多
关键词 人脸识别 奇异值分解 线性鉴别分析 识别特征 投影空间
下载PDF
Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines 被引量:2
13
作者 毛义梅 阙沛文 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期130-134,共5页
In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from def... In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines. 展开更多
关键词 time-frequency analysis Hilbert-Huang transform Empirical mode decomposition (EMD)
下载PDF
约束线性描述分析与人脸识别 被引量:1
14
作者 厉小润 赵光宙 赵辽英 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期4937-4940,共4页
针对高维、小样本模式识别中的特征提取问题,提出了一种约束线性描述分析方法(CLDA)。以线性变换后样本的类内距离与类间距离之比最小作为准则函数,同时加上约束条件使变换后的样本中心沿着特定的正交方向,通过白化变换、Gram-Schimdt... 针对高维、小样本模式识别中的特征提取问题,提出了一种约束线性描述分析方法(CLDA)。以线性变换后样本的类内距离与类间距离之比最小作为准则函数,同时加上约束条件使变换后的样本中心沿着特定的正交方向,通过白化变换、Gram-Schimdt正交化和正交子空间投影求解约束准则函数得到最优变换矩阵。针对人脸识别的小样本问题,根据奇异值分解定理实现白化变换。对ORL和UMIST人脸库进行了仿真研究,结果表明CLDA方法的性能接近于某些Fisher描述分析方法如直接Fisher描述分析(DDA)和改进的Fisher描述分析(R-LDA)。 展开更多
关键词 人脸识别 白化变换 约束线性描述分析 正交子空间投影 奇异值分解
下载PDF
加速度分解对定常约束多体系统的动力学分析 被引量:2
15
作者 水小平 《北京理工大学学报》 EI CAS CSCD 1996年第3期239-244,共6页
通过约束矩阵及其正交补的两组基,将定常约束多体系统的动力学方程沿与约束相容和不相容的两个方向上投影,并将系统的广义加速度沿这两个方向进行分解,得到描述系统运动的纯微分方程和求约束力的公式,同时提出了违约修正的一种方法... 通过约束矩阵及其正交补的两组基,将定常约束多体系统的动力学方程沿与约束相容和不相容的两个方向上投影,并将系统的广义加速度沿这两个方向进行分解,得到描述系统运动的纯微分方程和求约束力的公式,同时提出了违约修正的一种方法.最后给出一个说明性例子. 展开更多
关键词 动力学分析 多体系统 定常约束 加速度 分解
下载PDF
快速增量主分量算法的近似协方差矩阵实现
16
作者 曹向海 刘宏伟 吴顺君 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第3期459-463,共5页
针对主分量分析法在实际应用中运算量较大的问题,首先基于特征向量相互正交的特性,将子空间投影算法的运算量降低为原算法的1/P(P为所需的特征向量个数).然后利用大特征值及其对应的特征向量构成的近似协方差矩阵,将子空间投影算法中的... 针对主分量分析法在实际应用中运算量较大的问题,首先基于特征向量相互正交的特性,将子空间投影算法的运算量降低为原算法的1/P(P为所需的特征向量个数).然后利用大特征值及其对应的特征向量构成的近似协方差矩阵,将子空间投影算法中的广义特征值分解问题转化为特征值分解,得到运算量降低为原算法1/N(N为向量维数)的快速算法.最后基于ORL人脸数据库的实验验证了算法的有效性. 展开更多
关键词 子空间投影算法 特征分解 增量主分量分析 近似协方差矩阵
下载PDF
基于QR分解的扩展监督局部保留映射
17
作者 江艳霞 刘子龙 《计算机工程》 CAS CSCD 北大核心 2010年第12期198-199,203,共3页
针对局部保留映射(LPP)算法不能提供数据集的差异信息问题,提出一种基于QR分解的扩展有监督LPP算法。该方法对训练数据矩阵进行QR分解,采用有监督的LPP算法进行降维,利用类别信息对降维后的数据进行Fisher线性判别式分析,得到最终的映... 针对局部保留映射(LPP)算法不能提供数据集的差异信息问题,提出一种基于QR分解的扩展有监督LPP算法。该方法对训练数据矩阵进行QR分解,采用有监督的LPP算法进行降维,利用类别信息对降维后的数据进行Fisher线性判别式分析,得到最终的映射矩阵以提高判别性能。实验结果表明,该方法较主成分分析法和LPP方法有更好的判别性能。 展开更多
关键词 主成分分析 局部保留映射 QR分解 Fisher线性判别式
下载PDF
基于投影近似子空间跟踪算法的谐波检测方法 被引量:4
18
作者 李诚诚 汪芳宗 《电测与仪表》 北大核心 2009年第4期21-25,共5页
子空间分解类算法在理论上具有任意的高分辨率,非常适合于电力系统各类谐波的分析,但需要对高维矩阵进行特征值分解,这不仅费时而且不易于工程实现。本文将投影近似子空间跟踪算法引入电力系统谐波分析领域,详细分析评估了PASTd算法的... 子空间分解类算法在理论上具有任意的高分辨率,非常适合于电力系统各类谐波的分析,但需要对高维矩阵进行特征值分解,这不仅费时而且不易于工程实现。本文将投影近似子空间跟踪算法引入电力系统谐波分析领域,详细分析评估了PASTd算法的性能。仿真结果表明,紧缩投影近似子空间跟踪算法即PASTd算法不仅保留了子空间分解类算法的超分辨率特性,而且收敛速度较快,稳定性好,可推广用于电力系统谐波检测领域。 展开更多
关键词 谐波分析 奇异值分解 子空间迭代 PAST PASTd
下载PDF
欠定条件下同步组网跳频信号盲源分离方法 被引量:4
19
作者 王少波 郭英 +2 位作者 眭萍 李红光 杨鑫 《计算机工程》 CAS CSCD 北大核心 2020年第10期166-172,181,共8页
为实现欠定条件下同步组网多跳频信号的盲源分离,提出一种基于平行因子分析模型与子空间投影法的跳频信号分离方法。通过计算跳频信号时延相关矩阵构造三阶张量,将混合矩阵估计问题转化为张量CP分解问题。同时改进用于CP分解的经典最小... 为实现欠定条件下同步组网多跳频信号的盲源分离,提出一种基于平行因子分析模型与子空间投影法的跳频信号分离方法。通过计算跳频信号时延相关矩阵构造三阶张量,将混合矩阵估计问题转化为张量CP分解问题。同时改进用于CP分解的经典最小二乘(ALS)算法,使用直接三线性分解方法粗估加载矩阵作为ALS初始迭代矩阵,在迭代过程中采用标准线搜索加速收敛得到混合矩阵。在此基础上,利用子空间投影法完成跳频信号的盲源分离,并剔除离散噪点进一步优化分离效果。仿真结果表明,该方法能够有效提高混合矩阵估计精度,改善源信号恢复效果。 展开更多
关键词 同步组网 跳频信号 欠定盲源分离 平行因子分析 CP分解 子空间投影
下载PDF
基于降阶模型的中子扩散特征值问题的不确定性分析研究 被引量:2
20
作者 梁鑫源 王毅箴 郝琛 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第8期1584-1591,共8页
为提高基于抽样统计的堆芯物理不确定性分析效率,将本征正交分解(POD)法与伽辽金(Galerkin)投影法相结合,研究了基于POD-Galerkin方法的降阶模型在堆芯物理不确定性分析中的应用可行性。以二维两群TWIGL基准题为研究对象,在各物质区群... 为提高基于抽样统计的堆芯物理不确定性分析效率,将本征正交分解(POD)法与伽辽金(Galerkin)投影法相结合,研究了基于POD-Galerkin方法的降阶模型在堆芯物理不确定性分析中的应用可行性。以二维两群TWIGL基准题为研究对象,在各物质区群常数的有限次扰动下提取堆芯通量分布的关键变化特征,将全阶中子扩散问题在各变化特征上投影以建立降阶中子扩散模型,并以该降阶模型替代全阶模型开展物质区群常数的不确定性分析。结果表明:降阶与全阶模型计算的k eff数学期望偏差接近1 pcm,并且相比于全阶模型不确定性分析所需的计算时间,将降阶模型构造所需的全阶模型计算时间考虑在内,降阶模型的分析时间仅为其11.48%,极大地提高了不确定性分析的效率。基于拉丁超立方抽样和简单随机抽样的降阶与全阶模型计算的k eff数学期望偏差均小于8 pcm,相同样本量下拉丁超立方抽样结果的误差更小。从TWIGL基准题测试结果来看,在POD-Galerkin降阶建模中,相同样本量下,更建议采用拉丁超立方抽样方法。 展开更多
关键词 降阶模型 本征正交分解 伽辽金投影 不确定性分析
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部