Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter betwee...Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization peformance of such synchronized laser sys-tems.However,the origins of the relative timing jitter in such systens are not fully determined,which in turn prevents the experimental efforts to optimize the synchronization perfornance.Here,we demonstrate,through theoretical modeling and mumerical simulation,that the photo-detction could be one physical origin of the relative timing jitter.Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated,revealing different qualitative and quantitative behavios.Based on the nature of this photo-detection-induced timing jitter,we further propose several strategies to reduce the relative timing jitter.Our thoretical results will provide guidelines for optimizing synchronization performance in experiments.展开更多
A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a G...In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.展开更多
The imaging system formed by an annular left-handed material (LHM) lens as well as the evanescent waves in the lens are simulated numerically with a finite-difference time-domain (FDTD) method. For b - a 〉 λ (a...The imaging system formed by an annular left-handed material (LHM) lens as well as the evanescent waves in the lens are simulated numerically with a finite-difference time-domain (FDTD) method. For b - a 〉 λ (a and b are respectively the inner and outer radii of the annular lens, and λ is the wavelength), when a point source is placed at an internal grid point, we demonstrate that the evanescent waves are produced around the internal interface, and cannot propagate outwards. As for b - a 〈λ ),, the evanescent waves appear around both the internal and the external interfaces, which remarkably implies the coupling between the two interfaces. Hence it can be inferred that the evanescent waves around the external interface participating in the super-resolution imaging result from the coupling of the evanescent waves around the interface. Moreover, the partly uncomprehended properties of the evanescent waves in the LHM slab are also disclosed. It is conducive to understanding the evanescent waves in the LHMs further.展开更多
基金supported by the National Natural Science Foundation of China (11404218)the Science and Technology Innovation Commission of Shenzhen (JCYJ20160307150657874,KQJSCX-20160226194151,KQTD20150710165601017)+1 种基金the Project of Department of Education of Guangdong Province (2014KTSCX114)the Natural Science Foundation of SZU (00002701).
文摘Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization peformance of such synchronized laser sys-tems.However,the origins of the relative timing jitter in such systens are not fully determined,which in turn prevents the experimental efforts to optimize the synchronization perfornance.Here,we demonstrate,through theoretical modeling and mumerical simulation,that the photo-detction could be one physical origin of the relative timing jitter.Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated,revealing different qualitative and quantitative behavios.Based on the nature of this photo-detection-induced timing jitter,we further propose several strategies to reduce the relative timing jitter.Our thoretical results will provide guidelines for optimizing synchronization performance in experiments.
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)
文摘In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.
文摘The imaging system formed by an annular left-handed material (LHM) lens as well as the evanescent waves in the lens are simulated numerically with a finite-difference time-domain (FDTD) method. For b - a 〉 λ (a and b are respectively the inner and outer radii of the annular lens, and λ is the wavelength), when a point source is placed at an internal grid point, we demonstrate that the evanescent waves are produced around the internal interface, and cannot propagate outwards. As for b - a 〈λ ),, the evanescent waves appear around both the internal and the external interfaces, which remarkably implies the coupling between the two interfaces. Hence it can be inferred that the evanescent waves around the external interface participating in the super-resolution imaging result from the coupling of the evanescent waves around the interface. Moreover, the partly uncomprehended properties of the evanescent waves in the LHM slab are also disclosed. It is conducive to understanding the evanescent waves in the LHMs further.