Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging sche...Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.展开更多
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ...Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.展开更多
This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period...This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period should satisfy the requirements of power industry restructuring.Therefore, it is necessary to set up an appropriate pricing mechanism and system including thelinks of sales price to network, transmission and distribution price (T&D price) and sales price.In the light of various factors influencing increase and decrease in price, a forecast of electricitytariff is given in the five years to come.[展开更多
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai...A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.展开更多
Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent t...Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.展开更多
Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve pre...Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve predictive accuracy,ignoring the extraction and analysis of RTEP influence factors. In this study,a correlation analysis method is proposed based on stochastic matrix theory.Firstly, an augmented matrix is formulated, including RTEP influence factor data and RTEP state data. Secondly, data correlation analysis results are obtained given the statistical characteristics of source data based on stochastic matrix theory.Mean spectral radius( MSR) is used as the measure of correlativity.Finally,the proposed method is evaluated in New England electricity markets and compared with the BP neural network forecasting method. Experimental results show that the extracted index system comprehensively generalizes RTEP influence factors,which play a significant role in improving RTEP forecasting accuracy.展开更多
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr...In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.展开更多
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu...This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.展开更多
Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. ...Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.展开更多
Estimating the price of a financial asset or any tradable product is a complex task that depends on the availability of a reasonable amount of data samples. In the Brazilian electricity market environment, where spot ...Estimating the price of a financial asset or any tradable product is a complex task that depends on the availability of a reasonable amount of data samples. In the Brazilian electricity market environment, where spot prices are centrally calculated by computational models, the projection of hourly energy prices at the spot market is essential for decision-making, and with the particularities of this sector, this task becomes even more complex due to the stochastic behavior of some variables, such as the inflow to hydroelectric power plants and the correlation between variables that affect electricity generation, traditional statistical techniques of time series forecasting present an additional complexity when one tries to project scenarios of spot prices on different time horizons. To address these complexities of traditional forecasting methods, this study presents a new approach based on Machine Learning methodology applied to the electricity spot prices forecasting process. The model’s Learning Base is obtained from public information provided by the Brazilian official computational models: NEWAVE, DECOMP, and DESSEM. The application of the methodology to real cases, using back-testing with actual information from the Brazilian electricity sector demonstrates that the research is promising, as the adherence of the projections with the realized values is significant.展开更多
Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent o...Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.展开更多
In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. El...In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.展开更多
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic...A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.展开更多
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric...Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.展开更多
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It ...Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market展开更多
On Wednesday, China announced adjustments for the prices of non-residential power and thermal coal in order to ease power shortages and reduce financial pressure on power companies. The National Development and Reform...On Wednesday, China announced adjustments for the prices of non-residential power and thermal coal in order to ease power shortages and reduce financial pressure on power companies. The National Development and Reform Commission (NDRC) announced that it will raise the retail price展开更多
Since October 2008,China's social consumption of electricity had,for the first time,grown negatively compared to the same period of the previous year,and in November the negative growth range further expanded. The...Since October 2008,China's social consumption of electricity had,for the first time,grown negatively compared to the same period of the previous year,and in November the negative growth range further expanded. The major pressure faced by the electricity industry has now turned from the contradiction between coal and electricity to electricity quantity. This is undoubtedly a true and new test to electricity enterprises which get used to high growth but are now suffering great losses. The reform of electricity system has already been in great difficulties and now is getting into a more serious situation. In order to help readers improve their knowledge and understanding of the current tough situation faced by the electricity industry and discuss how to alleviate and get through the difficulty resulted from the economic crisis "encountered once every one hundred years" by joint efforts of all parties concerned,a Seminar on Crisis and Countermeasures for Electricity Industry was held on November 20,2008. Here are some extracts from the speeches of four experts.展开更多
The State Council decided to raise the retail electricity price by 0.25 Yuan/kWh from July, 2008. This will, to some extent, relieve the conflicts between power supply and demand, and decrease the economic losses in
The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of ...The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of the electricity demand by reacting against electricity prices. The aim of this research is to develop tools for helping customers and aggregators to join price and demand response programs, while helping them to hedge against the risk of short-term price volatility. In this way, the capacity of and hybrid methodology (Self-Organizing Maps and Statistical Ward's Linkage) to classify high electricity market prices is analysed. Besides, with the help of Non-Parametric Estimation, some price-patterns were found in the abovementioned clusters. The contained knowledge within these patterns supplies customer market-based information on which to base its energy use decisions. The interest for this participation of customers in markets is growing in developed countries to obtain a higher elasticity in demand. Results show the capability of this approach to improve data management and select coherent policies to accomplish cleared demand offers amongst different price scenarios in a more flexible way.展开更多
基金supported by the National Natural Science Foundation of China(72001007)the China Postdoctoral Science Foundation(2021M700304).
文摘Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.
文摘This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period should satisfy the requirements of power industry restructuring.Therefore, it is necessary to set up an appropriate pricing mechanism and system including thelinks of sales price to network, transmission and distribution price (T&D price) and sales price.In the light of various factors influencing increase and decrease in price, a forecast of electricitytariff is given in the five years to come.[
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.
文摘Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.
基金National Natural Science Foundation of China(No.61701104)the “13th Five Year Plan” Research Foundation of Jilin Provincial Department of Education,China(No.JJKH2017018KJ)
文摘Real-time electricity price( RTEP) influence factor extraction is essential to forecasting accurate power system electricity prices. At present,new electricity price forecasting models have been studied to improve predictive accuracy,ignoring the extraction and analysis of RTEP influence factors. In this study,a correlation analysis method is proposed based on stochastic matrix theory.Firstly, an augmented matrix is formulated, including RTEP influence factor data and RTEP state data. Secondly, data correlation analysis results are obtained given the statistical characteristics of source data based on stochastic matrix theory.Mean spectral radius( MSR) is used as the measure of correlativity.Finally,the proposed method is evaluated in New England electricity markets and compared with the BP neural network forecasting method. Experimental results show that the extracted index system comprehensively generalizes RTEP influence factors,which play a significant role in improving RTEP forecasting accuracy.
文摘In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.
文摘This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes.
文摘Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.
文摘Estimating the price of a financial asset or any tradable product is a complex task that depends on the availability of a reasonable amount of data samples. In the Brazilian electricity market environment, where spot prices are centrally calculated by computational models, the projection of hourly energy prices at the spot market is essential for decision-making, and with the particularities of this sector, this task becomes even more complex due to the stochastic behavior of some variables, such as the inflow to hydroelectric power plants and the correlation between variables that affect electricity generation, traditional statistical techniques of time series forecasting present an additional complexity when one tries to project scenarios of spot prices on different time horizons. To address these complexities of traditional forecasting methods, this study presents a new approach based on Machine Learning methodology applied to the electricity spot prices forecasting process. The model’s Learning Base is obtained from public information provided by the Brazilian official computational models: NEWAVE, DECOMP, and DESSEM. The application of the methodology to real cases, using back-testing with actual information from the Brazilian electricity sector demonstrates that the research is promising, as the adherence of the projections with the realized values is significant.
文摘Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.
文摘In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.
基金Sponsored by the National Outstanding Young Investigator Grant (Grant No6970025)the Key Project of National Natural Science Foundation (GrantNo59937150)+2 种基金863 High Tech Development Plan (Grant No2001AA413910)of China and the Key Project of National Natural Science Foundation(Grant No59937150)the Project of National Natural Science Foundation (Grant No60274054)
文摘A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(W22KJ2722005)“Research on Optimal Configuration and Operation Strategy of Energy Storage under“New Energy+Energy Storage”Mode”.
文摘Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.
基金This paper is about a project financed by the National Outstanding Young Investigator Grant (6970025)863 High Tech Development Plan of China (2001AA413910) the Project of National Natural Science Foundation (60274054) the Key Project of National Natural Science Foundation (59937150)it is also supported by its cooperating project financed by 863 High Tech Development Plan of China (2004AA412050).
文摘Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market
文摘On Wednesday, China announced adjustments for the prices of non-residential power and thermal coal in order to ease power shortages and reduce financial pressure on power companies. The National Development and Reform Commission (NDRC) announced that it will raise the retail price
文摘Since October 2008,China's social consumption of electricity had,for the first time,grown negatively compared to the same period of the previous year,and in November the negative growth range further expanded. The major pressure faced by the electricity industry has now turned from the contradiction between coal and electricity to electricity quantity. This is undoubtedly a true and new test to electricity enterprises which get used to high growth but are now suffering great losses. The reform of electricity system has already been in great difficulties and now is getting into a more serious situation. In order to help readers improve their knowledge and understanding of the current tough situation faced by the electricity industry and discuss how to alleviate and get through the difficulty resulted from the economic crisis "encountered once every one hundred years" by joint efforts of all parties concerned,a Seminar on Crisis and Countermeasures for Electricity Industry was held on November 20,2008. Here are some extracts from the speeches of four experts.
文摘The State Council decided to raise the retail electricity price by 0.25 Yuan/kWh from July, 2008. This will, to some extent, relieve the conflicts between power supply and demand, and decrease the economic losses in
文摘The main objective of electricity regulators when establishing electricity markets is to decrease the cost of electricity through competition. However, this scenario cannot be achieved without a full participation of the electricity demand by reacting against electricity prices. The aim of this research is to develop tools for helping customers and aggregators to join price and demand response programs, while helping them to hedge against the risk of short-term price volatility. In this way, the capacity of and hybrid methodology (Self-Organizing Maps and Statistical Ward's Linkage) to classify high electricity market prices is analysed. Besides, with the help of Non-Parametric Estimation, some price-patterns were found in the abovementioned clusters. The contained knowledge within these patterns supplies customer market-based information on which to base its energy use decisions. The interest for this participation of customers in markets is growing in developed countries to obtain a higher elasticity in demand. Results show the capability of this approach to improve data management and select coherent policies to accomplish cleared demand offers amongst different price scenarios in a more flexible way.