In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geolo...While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.展开更多
This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can genera...This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.展开更多
This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the mor...This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the morphometric parameters (terrain attributes: TAs). This aims to check its suitability for digital soil mapping (DSM) and survey in urban areas at the target scale 1:50,000. This scale represents the standard scale level for compiling soil inventories within all German states. The study is conducted on an urban area of 112.68 km2 in the southwest part of the state of Berlin in Germany. These relief units are the basis for determining the soil mapping units at the scale of 1:50,000. The generated preliminary soil map was compared to soil maps made using traditional soil survey methods. For the mainly natural soils, the equivalence area is 94.91%, and for the anthropogenic soils, the equivalence area is 95.34%. The proposed methodology is adequate for preliminary mapping of soil units based on the digital derivation of TAs. Landsat scenes are spatially explicit, physical representations of environmental covariates on the land surface. The free DEM-ASTER in combination with Landsat OLI images is found to be the appropriate model to represent the terrain surface and derive the TAs for environmental modeling and fitting of derivation the relief units and their topography features. However, the 30 m spatial resolution and the fairly coarse spectral resolution of DEMs and Landsat images limit their utility for digital soil mapping at this scale in urban areas with little topographic variation.展开更多
This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the cha...This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the charge,a peak overpressure prediction model for the composite charge under singlepoint detonation and simultaneous detonation was established.The effects of the charge structure and initiation method on the overpressure field characteristics were investigated in AUTODYN simulation.The accuracy of the prediction model and the reliability of the numerical simulation method were subsequently verified in a series of static explosion experiments.The results reveal that the mass of the inner charge was the key factor determining the peak overpressure of the composite charge under single-point detonation.The peak overpressure in the radial direction improved apparently with an increase in the aspect ratio of the charge.The overpressure curves in the axial direction exhibited a multi-peak phenomenon,and the secondary peak overpressure even exceeded the primary peak at distances of 30D and 40D(where D is the charge diameter).The difference in peak overpressure among azimuth angles of 0-90°gradually decreased with an increase in the propagation distance of the shock wave.The coupled effect of the detonation energy of the inner and outer charge under simultaneous detonation improved the overpressure in both radial and axial directions.The difference in peak overpressure obtained from model prediction and experimental measurements was less than 16.4%.展开更多
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege...This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.展开更多
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica...As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.展开更多
Flood disasters can be reliablymonitored using remote sensing photos with great spatiotemporal resolution.However,satellite revisit periods and extreme weather limit the use of high spatial resolution images.As a resu...Flood disasters can be reliablymonitored using remote sensing photos with great spatiotemporal resolution.However,satellite revisit periods and extreme weather limit the use of high spatial resolution images.As a result,this research provides a method for combining Landsat and MODIS pictures to produce high spatiotemporal imagery for flood disaster monitoring.Using the spatial and temporal adaptive reflectance fusion model(STARFM),the spatial and temporal reflectance unmixingmodel(STRUM),and three prominent algorithms of flexible spatiotemporal data fusion(FSDAF),Landsat fusion images are created by fusing MODIS and Landsat images.Then,to extract flood information,utilize a support vector machine(SVM)to classify the fusion images.Assess the accuracy of your work.Experimental results suggest that the three spatio-temporal fusion algorithms may be used to effectively monitor floods,with FSDAF’s fusion results outperforming STARFM and STRUM in both study areas.The overall flood classification accuracy of the three STARFM,STRUM,and FSDAF algorithms in the Gwydir research region is 0.89,0.90,and 0.91,respectively,with Kappa coefficients of 0.63,0.64,and 0.67.The flood classification accuracy of the three fusion algorithms in the New Orleans research region is 0.90,0.89,and 0.91,with Kappa values of 0.77,0.76,and 0.81,respectively.The spatio-temporal fusion technique can be used to successfully monitor floods,according to this study.展开更多
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41772349,41972309,41472301,41772348)supported by the National Natural Science Foundation of China。
文摘While the region of western Guangxi-southeastern Yunan, China, is known and considered prospective for manganese deposits, carrying out prospectivity mapping in this region is challenging due to the diversity of geological factors, the complexity of geological process and the asymmetry of geo-information. In this work, the manganese potential mapping for further exploration targeting is implemented via spatial analysis and modal-adaptive prospectivity modeling. On the basis of targeting criteria developed by the mineral system approach, the spatial analysis is leveraged to extract the predictor variables to identify features of the geological process. Specifically, a metallogenic field analysis approach is proposed to extract metallogenic information that quantifies the regional impacts of the synsedimentary faults and sedimentary basins. In the integration of the extracted predictor variables, a modal-adaptive prospectivity model is built, which allows to adapt different data availability and geological process. The resulting prospective areas of high potential not only correspond to the areas of known manganese deposits but also provide a number of favorable targets in the region for future mineral exploration.
文摘This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.
文摘This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the morphometric parameters (terrain attributes: TAs). This aims to check its suitability for digital soil mapping (DSM) and survey in urban areas at the target scale 1:50,000. This scale represents the standard scale level for compiling soil inventories within all German states. The study is conducted on an urban area of 112.68 km2 in the southwest part of the state of Berlin in Germany. These relief units are the basis for determining the soil mapping units at the scale of 1:50,000. The generated preliminary soil map was compared to soil maps made using traditional soil survey methods. For the mainly natural soils, the equivalence area is 94.91%, and for the anthropogenic soils, the equivalence area is 95.34%. The proposed methodology is adequate for preliminary mapping of soil units based on the digital derivation of TAs. Landsat scenes are spatially explicit, physical representations of environmental covariates on the land surface. The free DEM-ASTER in combination with Landsat OLI images is found to be the appropriate model to represent the terrain surface and derive the TAs for environmental modeling and fitting of derivation the relief units and their topography features. However, the 30 m spatial resolution and the fairly coarse spectral resolution of DEMs and Landsat images limit their utility for digital soil mapping at this scale in urban areas with little topographic variation.
基金funded by the National Natural Science Foundation of China(Grant No.11972018,No.12002336)China Postdoctoral Science Foundation(Grant No.2021M701710)。
文摘This article investigates the characteristics of shock wave overpressure generated by multi-layer composite charge under different detonation modes.Combining dimensional analysis and the explosion mechanism of the charge,a peak overpressure prediction model for the composite charge under singlepoint detonation and simultaneous detonation was established.The effects of the charge structure and initiation method on the overpressure field characteristics were investigated in AUTODYN simulation.The accuracy of the prediction model and the reliability of the numerical simulation method were subsequently verified in a series of static explosion experiments.The results reveal that the mass of the inner charge was the key factor determining the peak overpressure of the composite charge under single-point detonation.The peak overpressure in the radial direction improved apparently with an increase in the aspect ratio of the charge.The overpressure curves in the axial direction exhibited a multi-peak phenomenon,and the secondary peak overpressure even exceeded the primary peak at distances of 30D and 40D(where D is the charge diameter).The difference in peak overpressure among azimuth angles of 0-90°gradually decreased with an increase in the propagation distance of the shock wave.The coupled effect of the detonation energy of the inner and outer charge under simultaneous detonation improved the overpressure in both radial and axial directions.The difference in peak overpressure obtained from model prediction and experimental measurements was less than 16.4%.
基金Under the auspices of National Natural Science Foundation of China(No.41001363)
文摘This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.
基金This paper was supported by the 2018 Science and Technology Breakthrough Project of Henan Provincial Science and Technology Department(No.182102310694).
文摘As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.
文摘Flood disasters can be reliablymonitored using remote sensing photos with great spatiotemporal resolution.However,satellite revisit periods and extreme weather limit the use of high spatial resolution images.As a result,this research provides a method for combining Landsat and MODIS pictures to produce high spatiotemporal imagery for flood disaster monitoring.Using the spatial and temporal adaptive reflectance fusion model(STARFM),the spatial and temporal reflectance unmixingmodel(STRUM),and three prominent algorithms of flexible spatiotemporal data fusion(FSDAF),Landsat fusion images are created by fusing MODIS and Landsat images.Then,to extract flood information,utilize a support vector machine(SVM)to classify the fusion images.Assess the accuracy of your work.Experimental results suggest that the three spatio-temporal fusion algorithms may be used to effectively monitor floods,with FSDAF’s fusion results outperforming STARFM and STRUM in both study areas.The overall flood classification accuracy of the three STARFM,STRUM,and FSDAF algorithms in the Gwydir research region is 0.89,0.90,and 0.91,respectively,with Kappa coefficients of 0.63,0.64,and 0.67.The flood classification accuracy of the three fusion algorithms in the New Orleans research region is 0.90,0.89,and 0.91,with Kappa values of 0.77,0.76,and 0.81,respectively.The spatio-temporal fusion technique can be used to successfully monitor floods,according to this study.