The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the rel...Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.展开更多
The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite...The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite plate with suction is investigated. The governing equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations with dimensionless variables and solved numerically using shooting method with Runge-Kutta fourth-order method and Newton-Raphson’s interpolation scheme implemented in MATLAB. The result showed that with increase in Dufour and Soret parameter, fluid velocity increases and temperature increases with increase in variation of Dufour while, temperature decreases with increase in Soret. The effects of variable fluid viscosity, variable thermal conductivity, thermal radiation, Soret, Dufour, Prandtl and Schmidt parameters on the dimensionless velocity, temperature and concentration profiles are shown graphically.展开更多
The linear Rayleigh-Bénard electro-convective stability of the Newtonian dielectric liquid is determined theoretically subject to the temperature modulation with time.A perturbation method is used to compute the ...The linear Rayleigh-Bénard electro-convective stability of the Newtonian dielectric liquid is determined theoretically subject to the temperature modulation with time.A perturbation method is used to compute the critical Rayleigh number and the wave number.The critical Rayleigh number is calculated as a function of the frequency of modulation,the temperature-dependent variable viscosity,the electric field dependent variable viscosity,the Prandtl number,and the electric Rayleigh number.The effects of all three cases of modulations are established to delay or advance the onset of the convection process.In addition,how the effect of variable viscosity controls the onset of convection is studied.展开更多
In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turb...In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid in open channel have been further proposed. The concepts of the density turbulence stress and the viscosity turbulence stress have been firstly presented in the paper.展开更多
In mantle convection models, the mantle viscosity is generally assumed constant or dependent on depth. In this paper, a laterally variable viscosity is introduced into mantle convection model in which the mantle visco...In mantle convection models, the mantle viscosity is generally assumed constant or dependent on depth. In this paper, a laterally variable viscosity is introduced into mantle convection model in which the mantle viscosity consists of a constant background and latitude-dependent viscosity with small fluctuations. The features of toroidal field dependent on depth and Rayleigh number are discussed under two boundary conditions, i.e., the top rigid and bottom stress-free boundaries (R-F boundary for short) and both rigid ones (R-R boundary for short), respectively. The results show that the energy of toroidal field mainly concentrates in the middle and upper parts of a spherical shell, and the ratio of toroidal to total velocities amounts to only a few percents and hardly depends on Rayleigh number, while the convection patterns of toroidal field have been strongly affected by Rayleigh number. It is found that the convection patterns and velocities of toroidal field have obvious differences in latitudinal direction, which clearly reflects the effects of lateral mantle viscosity variations on the convection patterns. These preliminary results give us a possible hint to study some global tectonic phenomena, e.g. the asymmetry of the southern and northern hemispheres and the Earth's differential rotation.展开更多
The flow of an Oldroyd 8-constant fluid between coaxial cylinders with variable viscosity is considered.The heat transfer analysis is also taken into account.An analytical solution of the non-linear problem is obtaine...The flow of an Oldroyd 8-constant fluid between coaxial cylinders with variable viscosity is considered.The heat transfer analysis is also taken into account.An analytical solution of the non-linear problem is obtained usinghomotopy analysis method.The behavior of pertinent parameters is analyzed and depicted through graphs.展开更多
The flow and heat transfer of an incompressible viscous electrically conducting fluid over a continuously moving vertical infinite plate with uniform suction and heat flux in porous medium, taking account of the effec...The flow and heat transfer of an incompressible viscous electrically conducting fluid over a continuously moving vertical infinite plate with uniform suction and heat flux in porous medium, taking account of the effects of the variable viscosity, has been considered. The solutions are obtained for velocity, temperature, concentration and skin friction. It is found that the velocity increases as the viscosity of air or porous parameter increases whereas velocity decreases when Schmidt number increases. The skin friction coefficient is computed and discussed for various values of the parameters.展开更多
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of bulk viscous fluid for the totally anisotropic Bianchi type II space-time in such a way as to pre...Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of bulk viscous fluid for the totally anisotropic Bianchi type II space-time in such a way as to preserve the energy momentum tensor. We have presented solutions of field equations which represent expanding, shearing and non-rotating cosmological models of the universe. The physical behaviours of the models are discussed .We observe that the results obtained match with recent observations of SNIa.展开更多
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid...An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement.展开更多
The effect of viscosity depending exponentially on temperature on the onset of penetrative ferro-thermal-convection (FTC) in a saturated horizontal porous layer in the presence of vertical magnetic field is investigat...The effect of viscosity depending exponentially on temperature on the onset of penetrative ferro-thermal-convection (FTC) in a saturated horizontal porous layer in the presence of vertical magnetic field is investigated. The bounding surface of the ferrofluid layer is considered to be rigid-rigid and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also analytically by a regular perturbation technique with wave number as a perturbation parameter. The analytical and numerical results are found to be concurrence. The characteristics of stability of the system are strongly dependent on the viscosity parameter B. The effect of B on the onset of ferroconvection in a porous layer is dual in nature depending on the choices of physical parameters and a sublayer starts to form at higher values of B. Whereas, increase in magnetic number M1 and the Darcy number Da is to advance the onset of ferroconvection in a porous layer. The nonlinearity of fluid magnetization M3?is found to have no influence on the onset of ferroconvection.展开更多
Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimension...Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.展开更多
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
文摘Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.
文摘The motion of incompressible fluid of a variable fluid viscosity and variable thermal conductivity with thermal radiation, Dufour, Soret with heat and mass transfer over a linearly moving porous vertical semi-infinite plate with suction is investigated. The governing equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations with dimensionless variables and solved numerically using shooting method with Runge-Kutta fourth-order method and Newton-Raphson’s interpolation scheme implemented in MATLAB. The result showed that with increase in Dufour and Soret parameter, fluid velocity increases and temperature increases with increase in variation of Dufour while, temperature decreases with increase in Soret. The effects of variable fluid viscosity, variable thermal conductivity, thermal radiation, Soret, Dufour, Prandtl and Schmidt parameters on the dimensionless velocity, temperature and concentration profiles are shown graphically.
文摘The linear Rayleigh-Bénard electro-convective stability of the Newtonian dielectric liquid is determined theoretically subject to the temperature modulation with time.A perturbation method is used to compute the critical Rayleigh number and the wave number.The critical Rayleigh number is calculated as a function of the frequency of modulation,the temperature-dependent variable viscosity,the electric field dependent variable viscosity,the Prandtl number,and the electric Rayleigh number.The effects of all three cases of modulations are established to delay or advance the onset of the convection process.In addition,how the effect of variable viscosity controls the onset of convection is studied.
文摘In this paper, using Navier-Stokes equations and Reynolds time-averaged rules, the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid have been presented, and the turbulent motional differential equations of variable density and variable viscosity Newtonian fluid in open channel have been further proposed. The concepts of the density turbulence stress and the viscosity turbulence stress have been firstly presented in the paper.
基金National Natural Science Foundation of China (49834020).
文摘In mantle convection models, the mantle viscosity is generally assumed constant or dependent on depth. In this paper, a laterally variable viscosity is introduced into mantle convection model in which the mantle viscosity consists of a constant background and latitude-dependent viscosity with small fluctuations. The features of toroidal field dependent on depth and Rayleigh number are discussed under two boundary conditions, i.e., the top rigid and bottom stress-free boundaries (R-F boundary for short) and both rigid ones (R-R boundary for short), respectively. The results show that the energy of toroidal field mainly concentrates in the middle and upper parts of a spherical shell, and the ratio of toroidal to total velocities amounts to only a few percents and hardly depends on Rayleigh number, while the convection patterns of toroidal field have been strongly affected by Rayleigh number. It is found that the convection patterns and velocities of toroidal field have obvious differences in latitudinal direction, which clearly reflects the effects of lateral mantle viscosity variations on the convection patterns. These preliminary results give us a possible hint to study some global tectonic phenomena, e.g. the asymmetry of the southern and northern hemispheres and the Earth's differential rotation.
文摘The flow of an Oldroyd 8-constant fluid between coaxial cylinders with variable viscosity is considered.The heat transfer analysis is also taken into account.An analytical solution of the non-linear problem is obtained usinghomotopy analysis method.The behavior of pertinent parameters is analyzed and depicted through graphs.
文摘The flow and heat transfer of an incompressible viscous electrically conducting fluid over a continuously moving vertical infinite plate with uniform suction and heat flux in porous medium, taking account of the effects of the variable viscosity, has been considered. The solutions are obtained for velocity, temperature, concentration and skin friction. It is found that the velocity increases as the viscosity of air or porous parameter increases whereas velocity decreases when Schmidt number increases. The skin friction coefficient is computed and discussed for various values of the parameters.
文摘Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of bulk viscous fluid for the totally anisotropic Bianchi type II space-time in such a way as to preserve the energy momentum tensor. We have presented solutions of field equations which represent expanding, shearing and non-rotating cosmological models of the universe. The physical behaviours of the models are discussed .We observe that the results obtained match with recent observations of SNIa.
文摘An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement.
文摘The effect of viscosity depending exponentially on temperature on the onset of penetrative ferro-thermal-convection (FTC) in a saturated horizontal porous layer in the presence of vertical magnetic field is investigated. The bounding surface of the ferrofluid layer is considered to be rigid-rigid and insulated to temperature perturbations. The resulting eigenvalue problem is solved numerically using the Galerkin technique and also analytically by a regular perturbation technique with wave number as a perturbation parameter. The analytical and numerical results are found to be concurrence. The characteristics of stability of the system are strongly dependent on the viscosity parameter B. The effect of B on the onset of ferroconvection in a porous layer is dual in nature depending on the choices of physical parameters and a sublayer starts to form at higher values of B. Whereas, increase in magnetic number M1 and the Darcy number Da is to advance the onset of ferroconvection in a porous layer. The nonlinearity of fluid magnetization M3?is found to have no influence on the onset of ferroconvection.
文摘Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.