Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a ti...Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a timeaware searchable encryption with designated server is proposed in this paper. It is based on Boneh's public key encryption with keyword search and Rivest's timed-release cryptology. Our construction has three features: the user cannot issue a keyword search query successfully unless the search falls into the specific time range;only the authorized user can generate a valid trapdoor;only the designated server can execute the search. Applying our scheme in a multi-user environment, the number of the keyword ciphertexts would not increase linearly with the number of the authorized users. The security and performance analysis shows that our proposed scheme is securer and more efficient than the existing similar schemes.展开更多
基金This study was jointly supported by the National Natural Science Foundation of China (No. 61702067, No. 61472464)the Natural Science Foundation of Shangdong Province, China (No. ZR2015FL024).
文摘Despite the benefits of EHRs (Electronic Health Records), there is a growing concern over the risks of privacy exposure associated with the technologies of EHR storing and transmission. To deal with this problem, a timeaware searchable encryption with designated server is proposed in this paper. It is based on Boneh's public key encryption with keyword search and Rivest's timed-release cryptology. Our construction has three features: the user cannot issue a keyword search query successfully unless the search falls into the specific time range;only the authorized user can generate a valid trapdoor;only the designated server can execute the search. Applying our scheme in a multi-user environment, the number of the keyword ciphertexts would not increase linearly with the number of the authorized users. The security and performance analysis shows that our proposed scheme is securer and more efficient than the existing similar schemes.