期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data
1
作者 Hong Sun Fangquan Yang +2 位作者 Peiwen Zhang Yang Jiao Yunxiang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2549-2569,共21页
With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk manageme... With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management,but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.Therefore,an improved risk assessment algorithm(PS-AE-LSTM)based on long short-term memory network(LSTM)with autoencoder(AE)is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels.Firstly,based on the normal distribution characteristics of flight data,a probability severity(PS)model is established to enhance the quality of risk assessment labels.Secondly,autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.Finally,utilizing the time-series nature of flight data,a long and short-termmemory network is used to classify the risk level and improve the accuracy of risk assessment.Thus,a risk assessment experimentwas conducted to analyze a fleet landing phase dataset using the PS-AE-LSTMalgorithm to assess the risk level associated with aircraft hard landing events.The results show that the proposed algorithm achieves an accuracy of 86.45%compared with seven baseline models and has excellent risk assessment capability. 展开更多
关键词 Safety engineering risk assessment time series data autoencoder LSTM
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
2
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Effects of Freezing Disaster on Green-up Date of Vegetation Using MODIS/EVI Time Series Data 被引量:3
3
作者 夏浩铭 毕远溥 杨永国 《Agricultural Science & Technology》 CAS 2009年第3期131-135,共5页
In the field of global changes, the relationship between plant phenology and climate, which reflects the response of terrestrial ecosystem to global climate change, has become a key subject that is highly concerned. U... In the field of global changes, the relationship between plant phenology and climate, which reflects the response of terrestrial ecosystem to global climate change, has become a key subject that is highly concerned. Using the moderate-resolution imaging spectroradiometer (MODIS)/enhanced vegetation index(EVI) collected every eight days during January- July from 2005 to 2008 and the corresponding remote sensing data as experimental materials, we constructed cloud-free images via the Harmonic analysis of time series (HANTS). The cloud-free images were then treated by dynamic threshold method for obtaining the vegetation phenology in green up period and its distribution pattern. And the distribution pattern between freezing disaster year and normal year were comparatively analyzed for revealing the effect of freezing disaster on vegetation phenology in experimental plot. The result showed that the treated EVI data performed well in monitoring the effect of freezing disaster on vegetation phenology, accurately reflecting the regions suffered from freezing disaster. This result suggests that processing of remote sensing data using HANTS method could well monitor the ecological characteristics of vegetation. 展开更多
关键词 Time series data EVI HANTS MODIS
下载PDF
Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data 被引量:2
4
作者 WANG Fengfei TANG Shengjin +3 位作者 SUN Xiaoyan LI Liang YU Chuanqiang SI Xiaosheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期247-258,共12页
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n... Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction. 展开更多
关键词 remaining useful life(RUL)prediction imperfect prior information failure time data NONLINEAR random coefficient regression(RCR)model
下载PDF
The development of real time data driving multi-axis linkage and synergic movement control system of 3D variable cross-section roll forming machine 被引量:2
5
作者 管延智 Li Qiang +2 位作者 Wang Haibo Yang Zhenfeng Zheng Yuting 《High Technology Letters》 EI CAS 2013年第3期261-266,共6页
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn... The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement 展开更多
关键词 real time data driving variable cross-section roll forming multi-axis ganged synergic movement
下载PDF
Screening and reconstruction of real-time traffic data 被引量:1
6
作者 裴玉龙 马骥 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期1-6,共6页
The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are sum... The quality of real time traffic information is of the great importance, therefore the factors having effect on traffic characteristics are analyzed in general, and the necessities of real time data processing are summarized. The identification and reconstruction of real time traffic data are analyzed using Kalman filter equation and statistical approach. Four methods for ITS (Intelligent transportation system) detector data screening in traffic management systems are discussed in detail. Meanwhile traffic data examinations are discussed with solutions formulated through analysis, and recommendations are made for information collection and data management in future. 展开更多
关键词 real time traffic data ITS SCREENING RECONSTRUCTION
下载PDF
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 被引量:2
7
作者 伍雪冬 王耀南 +1 位作者 刘维亭 朱志宇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期546-551,共6页
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in... On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 展开更多
关键词 prediction of time series with missing data random interruption failures in the observation neural network approximation
下载PDF
A Survey of Time Series Data Visualization Methods 被引量:1
8
作者 Wangdong Jiang Jie Wu +3 位作者 Guang Sun Yuxin Ouyang Jing Li Shuang Zhou 《Journal of Quantum Computing》 2020年第2期105-117,共13页
In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accep... In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accepted by the general public living in the fast pace.Under this background,a new general visualization method for dynamic time series data emerges as the times require.Time series data visualization organizes abstract and hard-to-understand data into a form that is easily understood by the public.This method integrates data visualization into short videos,which is more in line with the way people get information in modern fast-paced lifestyles.The modular approach also facilitates public participation in production.This paper summarizes the dynamic visualization methods of time series data ranking,studies the relevant literature,shows its value and existing problems,and gives corresponding suggestions and future research prospects. 展开更多
关键词 Dynamic visualization historical ranking of time series data VIDEO big data
下载PDF
Real-time performance of periodic data transmission in EPA industrial Ethernet 被引量:2
9
作者 刘宁 仲崇权 莫亚林 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期336-342,共7页
To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By... To evaluate and improve the real-time performance of Ethernet for plant automation(EPA) industrial Ethernet,the real-time performance of EPA periodic data transmission was theoretically and experimentally studied.By analyzing information transmission regularity and EPA deterministic scheduling mechanism,periodic messages were categorized as different modes according to their entering-queue time.The scheduling characteristics and delivery time of each mode and their interacting relations were studied,during which the models of real-time performance of periodic information transmission in EPA system were established.On this basis,an experimental platform is developed to test the delivery time of periodic messages transmission in EPA system.According to the analysis and the experiment,the main factors that limit the real-time performance of EPA periodic data transmission and the improvement methods were proposed. 展开更多
关键词 Ethernet for plant automation(EPA) industrial Ethernet periodic data transmission real-time performance delivery time
下载PDF
Sentiment Drift Detection and Analysis in Real Time Twitter Data Streams
10
作者 E.Susi A.P.Shanthi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3231-3246,共16页
Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.... Handling sentiment drifts in real time twitter data streams are a challen-ging task while performing sentiment classifications,because of the changes that occur in the sentiments of twitter users,with respect to time.The growing volume of tweets with sentiment drifts has led to the need for devising an adaptive approach to detect and handle this drift in real time.This work proposes an adap-tive learning algorithm-based framework,Twitter Sentiment Drift Analysis-Bidir-ectional Encoder Representations from Transformers(TSDA-BERT),which introduces a sentiment drift measure to detect drifts and a domain impact score to adaptively retrain the classification model with domain relevant data in real time.The framework also works on static data by converting them to data streams using the Kafka tool.The experiments conducted on real time and simulated tweets of sports,health care andfinancial topics show that the proposed system is able to detect sentiment drifts and maintain the performance of the classification model,with accuracies of 91%,87%and 90%,respectively.Though the results have been provided only for a few topics,as a proof of concept,this framework can be applied to detect sentiment drifts and perform sentiment classification on real time data streams of any topic. 展开更多
关键词 Sentiment drift sentiment classification big data BERT real time data streams TWITTER
下载PDF
Generating Synthetic Data to Reduce Prediction Error of Energy Consumption
11
作者 Debapriya Hazra Wafa Shafqat Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2022年第2期3151-3167,共17页
Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions.Energy industries worldwide are trying hard to predict ... Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions.Energy industries worldwide are trying hard to predict future energy consumption that could eliminate over or under contracting energy resources and unnecessary financing.Machine learning techniques for predicting energy are the trending solution to overcome the challenges faced by energy companies.The basic need for machine learning algorithms to be trained for accurate prediction requires a considerable amount of data.Another critical factor is balancing the data for enhanced prediction.Data Augmentation is a technique used for increasing the data available for training.Synthetic data are the generation of new data which can be trained to improve the accuracy of prediction models.In this paper,we propose a model that takes time series energy consumption data as input,pre-processes the data,and then uses multiple augmentation techniques and generative adversarial networks to generate synthetic data which when combined with the original data,reduces energy consumption prediction error.We propose TGAN-skip-Improved-WGAN-GP to generate synthetic energy consumption time series tabular data.We modify TGANwith skip connections,then improveWGANGPby defining a consistency term,and finally use the architecture of improved WGAN-GP for training TGAN-skip.We used various evaluation metrics and visual representation to compare the performance of our proposed model.We also measured prediction accuracy along with mean and maximum error generated while predicting with different variations of augmented and synthetic data with original data.The mode collapse problemcould be handled by TGAN-skip-Improved-WGAN-GP model and it also converged faster than existing GAN models for synthetic data generation.The experiment result shows that our proposed technique of combining synthetic data with original data could significantly reduce the prediction error rate and increase the prediction accuracy of energy consumption. 展开更多
关键词 Energy consumption generative adversarial networks synthetic data time series data TGAN WGAN-GP TGAN-skip prediction error augmentation
下载PDF
A Model-free Approach to Fault Detection of Continuous-time Systems Based on Time Domain Data
12
作者 Steven X. Ding 《International Journal of Automation and computing》 EI 2007年第2期189-194,共6页
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d... In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals. 展开更多
关键词 Fault detection linear continuous time-invariant systems time domain data subspace methods observer-based residual generator
下载PDF
Time-Series Data and Analysis Software of Connected Vehicles
13
作者 Jaekyu Lee Sangyub Lee +1 位作者 Hyosub Choi Hyeonjoong Cho 《Computers, Materials & Continua》 SCIE EI 2021年第6期2709-2727,共19页
In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze ... In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected. 展开更多
关键词 Connected vehicle data time series data OBD data analysis correlation coef
下载PDF
Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing
14
作者 V.Nivethitha G.Aghila 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期887-904,共18页
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l... Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution. 展开更多
关键词 Edge computing cloud computing scientific workflow data placement energy of datacenters data transmission time
下载PDF
The Organizing of Database from Surlari National Geomagnetic Observatory
15
作者 Natalia-Silvia Asimopolos Laurentiu Asimopolos +1 位作者 Bogdan Balea Adrian Aristide Asimopolos 《Journal of Environmental Science and Engineering(A)》 2021年第1期26-33,共8页
Our paper describes the organizing of database,remarks about SNGO(Surlari National Geomagnetic Observatory)and network infrastructure.Based on the geomagnetic data acquired and stored on the database server,we perform... Our paper describes the organizing of database,remarks about SNGO(Surlari National Geomagnetic Observatory)and network infrastructure.Based on the geomagnetic data acquired and stored on the database server,we perform the processing and analysis of geomagnetic parameters through different spectral,statistical and correlation methods.All these parameters are included in the geomagnetic database on server.The web interface for the database meets the different needs of handling the data collected,raw or processed.The server-side programming language used for design is php.This allow us to select different periods for which access to stored data,required for different search filters and different parameters or data from different time periods can be compared.For a more in-depth analysis of the stored data,through JavaScript programming language graphs for different parameters can be drawn.Access to the web interface can be done with or without authentication,depending on the need to ensure the security of certain data collected,stored and processed.The applications are scalable for different devices that will access it:mobile,tablets,laptops or desktops. 展开更多
关键词 Geomagnetic observatory dataBASE data in real time data acquisition data processing
下载PDF
Literature Review of Marketing theory based on Big Data
16
作者 Zhang Haiyang Li Pengju 《International English Education Research》 2014年第7期49-51,共3页
Since the concept of big data was proposed, the theory on big data is concerned by public, academics, market watchers, researcher and so on, people explore all aspects of the Big Data Time, more than in academic, it h... Since the concept of big data was proposed, the theory on big data is concerned by public, academics, market watchers, researcher and so on, people explore all aspects of the Big Data Time, more than in academic, it has an impact on all areas in marketing,we collect some papers and extract its viewpoints that involve the theory, methods in this article, we hope that it helps to do research on the theory of big data in the field of marketing. 展开更多
关键词 Big data Time Big data MARKETING
下载PDF
Determination of Kolmogorov Entropy of Chaotic Attractor Included in One-Dimensional Time Series of Meteorological Data
17
作者 严绍瑾 彭永清 王建中 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第2期243-250,共8页
The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Ko... The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable. 展开更多
关键词 Determination of Kolmogorov Entropy of Chaotic Attractor Included in One-Dimensional Time Series of Meteorological data
下载PDF
Comparative Analysis of Climatic Change Trend and Change-Point Analysis for Long-Term Daily Rainfall Annual Maximum Time Series Data in Four Gauging Stations in Niger Delta
18
作者 Masi G. Sam Ify L. Nwaogazie +4 位作者 Chiedozie Ikebude Jonathan O. Irokwe Diaa W. El Hourani Ubong J. Inyang Bright Worlu 《Open Journal of Modern Hydrology》 2023年第4期229-245,共17页
The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta re... The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling. 展开更多
关键词 Rainfall Time Series data Climate Change Trend Analysis Variation Rate Change Point Dates Non-Parametric Statistical Test
下载PDF
Addressing the Challenge of Interpreting Microclimatic Weather Data Collected from Urban Sites
19
作者 L.Bourikas T.Shen +4 位作者 P.A.B.James D.H.C.Chow M.F.Jentsch J.Darkwa A.S.Bahaj 《Journal of Power and Energy Engineering》 2013年第5期7-15,共9页
This paper presents some installation and data analysis issues from an ongoing urban air temperature and humidity measurement campaign in Hangzhou and Ningbo, China. The location of the measurement sites, the position... This paper presents some installation and data analysis issues from an ongoing urban air temperature and humidity measurement campaign in Hangzhou and Ningbo, China. The location of the measurement sites, the positioning of the sensors and the harsh conditions in an urban environment can result in missing values and observations that are unrepresentative of the local urban microclimate. Missing data and erroneous values in micro-scale weather time series can produce bias in the data analysis, false correlations and wrong conclusions when deriving the specific local weather patterns. A methodology is presented for the identification of values that could be false and for determining whether these are “noise”. Seven statistical methods were evaluated in their performance for replacing missing and erroneous values in urban weather time series. The two methods that proposed replacement with the mean values from sensors in locations with a Sky View Factor similar to that of the target sensor and the sensors closest to the target’s location performed well for all Day-Night and Cold-Warm days scenarios. However, during night time in warm weather the replacement with the mean values for air temperature of the nearest locations outperformed all other methods. The results give some initial evidence of the distinctive urban microclimate development in time and space under different regional weather forcings. 展开更多
关键词 Urban Microclimate Observations Installation Challenges Weather data Time Series Analysis Missing data
下载PDF
Studies of Earthquake Hazard Using Microseismicity Data in Modern Times
20
作者 Liu Jie,Chen Yong,Yang Yichong,and Ni JianhuaCenter for Analysis and Prediction,SSB,Beijing 100036,China State Seismological Bureau,Beijing 100036,China Zhangjiakou Police School,Zhangjiakou 075000,China 《Earthquake Research in China》 1997年第3期16-24,共9页
This paper selects some representative regions to obtain their G-R relation curves according to their seismicity characteristics,by using ML≥2.0 microseismicity data(1970~1993)in North China.The annual occurrence rat... This paper selects some representative regions to obtain their G-R relation curves according to their seismicity characteristics,by using ML≥2.0 microseismicity data(1970~1993)in North China.The annual occurrence rate of events of each magnitude can be inferred from the G-R relation.At the same tune,the actual annual occurrence rate of earthquakes of higher magnitudes can be calculated from historical earthquakes(1300-1993)recorded in the same region.It seems that both results are almost the same.Therefore,the rate of events of higher magnitudes can be obtained by using microseismicity data when the proper region is selected.However,two points should be noticed:(1)The method can only give the annual occurrence rate in a seismicity system and estimate the whole situation of the system.(2)When there is a very large earthquake in and near the period in which the microseismicity data are applied,the actual occurrence rate of the system,including this larger earthquake,cannot be obtained by this method. 展开更多
关键词 Studies of Earthquake Hazard Using Microseismicity data in Modern Times
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部