The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-...The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.展开更多
Experiments were conducted on a trickle bed with 0.283m ID to elucidate the relationship between hysteretic phenomena and liquid distribution. The hysteresis of pressure drop and the variance of radial liquid distribu...Experiments were conducted on a trickle bed with 0.283m ID to elucidate the relationship between hysteretic phenomena and liquid distribution. The hysteresis of pressure drop and the variance of radial liquid distribution were observed simultaneously. Residence time distribution (RTD), holdup and mean residence time (RT) of liquid phase were also found to demonstrate hysteresis of the same nature. RTD, liquid holdup and mean RT calculated with a simple model from the distribution of liquid flow rate show characteristics consistant with the experimental data, suggesting that the hyteretic phenomena originate from the multiplicity and nonuniformity of liquid flow distribution.展开更多
As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence...As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence time distributions of the lab scale subsurface flow constructed wetland.Considering the presence of trailing and multiple peaks of the tracer breakthrough curve,the multi flow dispersion model(MFDM)was used to fit the experimental tracer breakthrough curves.According to the residual sum of squares and comparison between the experimental values and simulated values of the tracer concentration,MFDM could fit the residence time distribution(RTD)curve satisfactorily,the results of which also reflected the layered structure of wetland cells,thus to give reference for application of MFDM to the same kind of subsurface flow constructed wetlands.展开更多
We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an ...We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an improved adaptive time frequency distribution is developed, which is non negative, free of cross term interference, and of better time frequency resolution. The paper presents an effective numerical algorithm to estimate the optimal parameters of the basis. Simulations indicate that the proposed approach is effective in analyzing signal's time frequency behavior.展开更多
A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating condition...A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.展开更多
In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time m...In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.展开更多
The earthquakes with Ms≥6.0 are often gathered into belts or clusters and are roughly consistent with tectonic structure trends in the Sichuan-Yunnan (Chuan-Dian) region. The middle south part(98°-106°E, 21...The earthquakes with Ms≥6.0 are often gathered into belts or clusters and are roughly consistent with tectonic structure trends in the Sichuan-Yunnan (Chuan-Dian) region. The middle south part(98°-106°E, 21°-34°N) of South-North Seismic Zone can be zoned into seven small areas. There all were strong quakes with M_s≥7.0 historically in each small area. Ten earthquakes with M_s≥7.0 have occurred in this region since 1970 and they appeared in five small areas respectively. The relationships between occurrence-time and cumulative frequencies of strong quakes in these five areas are shown to be an exponential distribution or power function. By examining the inner coincidence it is indicated that these relationships are of definite significance to mid-long term macroseismic prediction of each area.展开更多
The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numer...The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numerical analysis of the lumped time distribution functions was carried out. The method for calculating molecularweight distribution of polymer in the stable free radical polymerization and more general cases was developed basedon the lumped time distribution functions.展开更多
In this paper,the superposition rule of the residence time distribution functions for the general systemhaving multiple inlet and outlet streams has been described and proved rigorously.For the cascade ves-sels system...In this paper,the superposition rule of the residence time distribution functions for the general systemhaving multiple inlet and outlet streams has been described and proved rigorously.For the cascade ves-sels system where the processed material in separate stages may be nonideally mixed in various degrees andthe volumes of separate stages may not be equal,the overall residence time distribution function E(t)and eachE(t)of the flow systems have been derived.The applications of these results to various flow systems havebeen discussed.展开更多
In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting m...In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting material, air as spouting gas, and hydrogen as tracer. The effects of superficial gas velocity, operating pressure, particle size and its category on gas residence time distribution were discussed. It was found that the gas velocity profile in spout was more uniform than that in annulus. It could be concluded that the gas flow in the spout could be treated as a plug-flow, while that in the annulus inhibited a strong non-ideal flow behavior. Increasing the superficial gas velocity and decreasing the operating pressure, the particle density and its size gave rise to spouting disturbance, thus the measured tracer concentrations vs. time curves fluctuated. The variances of residence time distribution curves could be taken as a measure of the gas fluctuation degree.展开更多
This paper deals with the problem of theoretical identification of the residence time distribution (RTD) characteristics of a straight pipe at laminar pulsatile flow, if tracer diffusion can be neglected. This situa...This paper deals with the problem of theoretical identification of the residence time distribution (RTD) characteristics of a straight pipe at laminar pulsatile flow, if tracer diffusion can be neglected. This situation is typical for micro-apparatuses (e.g. fluidic element) and also for flow in large arteries. Residence time distribution based on velocity profiles at pulsatile flow of a Newtonian liquid in a rigid pipe will be derived theoretically and compared with the well known results for a constant flow rate E(τ) = τ-^2/2τ^3 at τ 〉 τ^-/2, where E (τ) is differential distribution, x is residence time and τ^- is the mean residence time. The following part of the paper deals stimulus response experimental techniques using tracers. The principal problem related to laminar and convection dominated pulsatile flows is discussed: Can the impulse response also be identified with the actual residence time distribution in the case of variable flow? The general answer is no, and differences between RTD and impulse responses are evaluated as a function of the frequency and amplitude of pulsatile flows.展开更多
A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE. The time resolution of the spectrometer is 195 ps and the nonlinearity is less than 2 ...A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE. The time resolution of the spectrometer is 195 ps and the nonlinearity is less than 2 %. The spectrometer works very stably and no time drift is found over a period of experimelltal ruffs. This spectrometer has been successfully used in the g-factor measurement of 43 Sc (19/2-,3.1232 MeV).展开更多
The classical risk process that is perturbed by diffusion is studied. The explicit expressions for the ruin probability and the surplus distribution of the risk process at the time of ruin are obtained when the claim ...The classical risk process that is perturbed by diffusion is studied. The explicit expressions for the ruin probability and the surplus distribution of the risk process at the time of ruin are obtained when the claim amount distribution is a finite mixture of exponential distributions or a Gamma (2, α) distribution.展开更多
In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBE...In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.展开更多
Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user...Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user and only used one time. So thekey is one-time key. Inaddition, the user who generates the next one-time key, is random selected by the current sessionkey. In the protocol of this paper, the characteristic of time in the key-insulated public-key, adistributed protocol, translates into the characteristic of spaee which every point has differentsecret key in the different period. At the same time, the system is fit for key management in AdHoe, and is a new scheme of key management in Ad Hoc.展开更多
First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This state or lumped states may indicate first passage time of an interesting, rare and amazing ...First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This state or lumped states may indicate first passage time of an interesting, rare and amazing event. In this study, obtaining distribution of the first passage time relating to lumped states which are constructed by gathering the states through lumping method for a irreducible Markov chain whose state space is finite was deliberated. Thanks to lumping method the chain's Markov property has been preserved. Another benefit of lumping method in the way of practice is reduction of the state space thanks to gathering states together. As the obtained first passage distributions are continuous, it may be used in many fields such as reliability and risk analysis展开更多
Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduct...Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.展开更多
为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号...为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号,对其差值信号进行WVD分析,准确提取损伤反射信号到达时间;其次,通过ATDM建立各传感器间的距离差值关系,确定孔损伤位置中心并预测最大损伤半径,从而实现对孔损伤关键指标的识别;最后,通过数值模拟进一步验证该方法,结果表明,基于WVD/ATDM的损伤识别技术不仅能准确识别出孔损伤位置,而且能够有效地识别损伤区域面积。展开更多
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was...A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...展开更多
Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the sa...Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,展开更多
基金Financial support of this work by National Natural Science Foundation of China(51976037)。
文摘The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.
基金Supported by the National Natural Science Foundation of China(No.29676042).
文摘Experiments were conducted on a trickle bed with 0.283m ID to elucidate the relationship between hysteretic phenomena and liquid distribution. The hysteresis of pressure drop and the variance of radial liquid distribution were observed simultaneously. Residence time distribution (RTD), holdup and mean residence time (RT) of liquid phase were also found to demonstrate hysteresis of the same nature. RTD, liquid holdup and mean RT calculated with a simple model from the distribution of liquid flow rate show characteristics consistant with the experimental data, suggesting that the hyteretic phenomena originate from the multiplicity and nonuniformity of liquid flow distribution.
基金Under the auspices of the Creative Group Foundation of the National Natural Science Foundation of China(50721006)the National Basic Research Program of China(2006CB403402-3)+1 种基金the National Water Resource and Environment Special Item(2008ZX07207-006-04)the Natural Science Foundation of Shanghai(10ZR1400300)
文摘As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence time distributions of the lab scale subsurface flow constructed wetland.Considering the presence of trailing and multiple peaks of the tracer breakthrough curve,the multi flow dispersion model(MFDM)was used to fit the experimental tracer breakthrough curves.According to the residual sum of squares and comparison between the experimental values and simulated values of the tracer concentration,MFDM could fit the residence time distribution(RTD)curve satisfactorily,the results of which also reflected the layered structure of wetland cells,thus to give reference for application of MFDM to the same kind of subsurface flow constructed wetlands.
文摘We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an improved adaptive time frequency distribution is developed, which is non negative, free of cross term interference, and of better time frequency resolution. The paper presents an effective numerical algorithm to estimate the optimal parameters of the basis. Simulations indicate that the proposed approach is effective in analyzing signal's time frequency behavior.
基金funding from the National Natural Science Foundation of China,China(12172104,52102226)the Shenzhen Science and Technology Innovation Commission,China(JCYJ20200109113439837)the Stable Supporting Fund of Shenzhen,China(GXWD2020123015542700320200728114835006)。
文摘A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.
基金Project(14BTJ017)supported by National Social Science Foundation Project of ChinaProject supported by the 2014 Mathematics and Interdisciplinary Science Project of Central South University,China
文摘In order to make full use of digital data, such as data extracted from electronic police video systems, and optimize intersection signal parameters, the theoretical distribution of the vehicle's road travel time must first be determined. The intersection signal cycle and the green splits were optimized simultaneously, and the system total travel time was selected as the optimization goal. The distribution of the vehicle's link travel time is the combined results of the flow composition, road marking, the form of control, and the driver's driving habits. The method proposed has 15% lower system total stop delay and fewer total stops than the method of TRRL(Transport and Road Research Laboratory) in England and the method of ARRB(Australian Road Research Board) in Australia. This method can save 0.5% total travel time and will be easier to understand and test, which establishes a causal relationship between optimal results and specific forms of road segment management, such as speed limits.
文摘The earthquakes with Ms≥6.0 are often gathered into belts or clusters and are roughly consistent with tectonic structure trends in the Sichuan-Yunnan (Chuan-Dian) region. The middle south part(98°-106°E, 21°-34°N) of South-North Seismic Zone can be zoned into seven small areas. There all were strong quakes with M_s≥7.0 historically in each small area. Ten earthquakes with M_s≥7.0 have occurred in this region since 1970 and they appeared in five small areas respectively. The relationships between occurrence-time and cumulative frequencies of strong quakes in these five areas are shown to be an exponential distribution or power function. By examining the inner coincidence it is indicated that these relationships are of definite significance to mid-long term macroseismic prediction of each area.
文摘The lumped time distribution functions were proposed, which can be used for describing the dynamicsystems with two or more than two states of the end of growing polymer chain during chain addition polymerization.Numerical analysis of the lumped time distribution functions was carried out. The method for calculating molecularweight distribution of polymer in the stable free radical polymerization and more general cases was developed basedon the lumped time distribution functions.
文摘In this paper,the superposition rule of the residence time distribution functions for the general systemhaving multiple inlet and outlet streams has been described and proved rigorously.For the cascade ves-sels system where the processed material in separate stages may be nonideally mixed in various degrees andthe volumes of separate stages may not be equal,the overall residence time distribution function E(t)and eachE(t)of the flow systems have been derived.The applications of these results to various flow systems havebeen discussed.
基金Supported by the National Natural Science Foundation of China (No. 20490201) the Ministry of Education of China through the Doctorate Discipline Foundation (No. 2000042503).
文摘In a spouted bed of 80mm in ID and 1700mm in height, the gas residence time distributions at different radial positions in both spout and annular area were measured with five different kinds of particles as spouting material, air as spouting gas, and hydrogen as tracer. The effects of superficial gas velocity, operating pressure, particle size and its category on gas residence time distribution were discussed. It was found that the gas velocity profile in spout was more uniform than that in annulus. It could be concluded that the gas flow in the spout could be treated as a plug-flow, while that in the annulus inhibited a strong non-ideal flow behavior. Increasing the superficial gas velocity and decreasing the operating pressure, the particle density and its size gave rise to spouting disturbance, thus the measured tracer concentrations vs. time curves fluctuated. The variances of residence time distribution curves could be taken as a measure of the gas fluctuation degree.
文摘This paper deals with the problem of theoretical identification of the residence time distribution (RTD) characteristics of a straight pipe at laminar pulsatile flow, if tracer diffusion can be neglected. This situation is typical for micro-apparatuses (e.g. fluidic element) and also for flow in large arteries. Residence time distribution based on velocity profiles at pulsatile flow of a Newtonian liquid in a rigid pipe will be derived theoretically and compared with the well known results for a constant flow rate E(τ) = τ-^2/2τ^3 at τ 〉 τ^-/2, where E (τ) is differential distribution, x is residence time and τ^- is the mean residence time. The following part of the paper deals stimulus response experimental techniques using tracers. The principal problem related to laminar and convection dominated pulsatile flows is discussed: Can the impulse response also be identified with the actual residence time distribution in the case of variable flow? The general answer is no, and differences between RTD and impulse responses are evaluated as a function of the frequency and amplitude of pulsatile flows.
文摘A BaF2 time differential perturbed angular distribution spectrometer has been established at the HI-13 tandem accelerator in CIAE. The time resolution of the spectrometer is 195 ps and the nonlinearity is less than 2 %. The spectrometer works very stably and no time drift is found over a period of experimelltal ruffs. This spectrometer has been successfully used in the g-factor measurement of 43 Sc (19/2-,3.1232 MeV).
文摘The classical risk process that is perturbed by diffusion is studied. The explicit expressions for the ruin probability and the surplus distribution of the risk process at the time of ruin are obtained when the claim amount distribution is a finite mixture of exponential distributions or a Gamma (2, α) distribution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61573059,61401340,and 61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2016JM6035)the Fundamental Research Funds for the Central Universities,China(Grant No.JB161303)
文摘In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.
文摘Based on the characteristic of key-insulated public-key cryptosystem, wepropose a distributed landora session keys distribution protocol without a key distribution center.The session key is generated by different user and only used one time. So thekey is one-time key. Inaddition, the user who generates the next one-time key, is random selected by the current sessionkey. In the protocol of this paper, the characteristic of time in the key-insulated public-key, adistributed protocol, translates into the characteristic of spaee which every point has differentsecret key in the different period. At the same time, the system is fit for key management in AdHoe, and is a new scheme of key management in Ad Hoc.
文摘First passage time in Markov chains is defined as the first time that a chain passes a specified state or lumped states. This state or lumped states may indicate first passage time of an interesting, rare and amazing event. In this study, obtaining distribution of the first passage time relating to lumped states which are constructed by gathering the states through lumping method for a irreducible Markov chain whose state space is finite was deliberated. Thanks to lumping method the chain's Markov property has been preserved. Another benefit of lumping method in the way of practice is reduction of the state space thanks to gathering states together. As the obtained first passage distributions are continuous, it may be used in many fields such as reliability and risk analysis
文摘Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.
文摘为识别铝合金板孔损伤位置及区域,以Lamb波为研究基础,提出基于魏格纳-威利分布(WVD,WignerVille distribution)和到达时间差值法(ATDM,arrival time difference method)的损伤识别技术。首先,采集实验铝合金板健康和有损模型的Lamb信号,对其差值信号进行WVD分析,准确提取损伤反射信号到达时间;其次,通过ATDM建立各传感器间的距离差值关系,确定孔损伤位置中心并预测最大损伤半径,从而实现对孔损伤关键指标的识别;最后,通过数值模拟进一步验证该方法,结果表明,基于WVD/ATDM的损伤识别技术不仅能准确识别出孔损伤位置,而且能够有效地识别损伤区域面积。
基金The authors are grateful to"Chemical Grid Project"of Beijing University of Chemical Technology for providingthe computer facilities.
文摘A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No.2002AA601310).
文摘Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR). Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carded out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested,