In this paper, a governing differential equation of viscoelastic Timoshenko beam including both extension and shear viscosity is developed in the time domain by direct method. To measure the complex moduli and three p...In this paper, a governing differential equation of viscoelastic Timoshenko beam including both extension and shear viscosity is developed in the time domain by direct method. To measure the complex moduli and three parameters of standard linear solid, the forced vibration technique of beam is successfully used for PCL and PMMA specimens. The dynamical characteristics of viscoelastic Timoshenko beams, especially the damping properties, are derived from a considerable number of numerical computations. The analyses show that the viscosity of materials has great influence on dynamical characteristics of structures, especially on damping, and the standard linear solid model is the better one for describing the dynamic behavior of high viscous materials.展开更多
The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multipl...The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.展开更多
In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted in...In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.展开更多
文摘In this paper, a governing differential equation of viscoelastic Timoshenko beam including both extension and shear viscosity is developed in the time domain by direct method. To measure the complex moduli and three parameters of standard linear solid, the forced vibration technique of beam is successfully used for PCL and PMMA specimens. The dynamical characteristics of viscoelastic Timoshenko beams, especially the damping properties, are derived from a considerable number of numerical computations. The analyses show that the viscosity of materials has great influence on dynamical characteristics of structures, especially on damping, and the standard linear solid model is the better one for describing the dynamic behavior of high viscous materials.
基金Supported partially by the NSFC and the Science Foundation of China State Education Commission.
文摘The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.
基金Project supported by the Funds of the Natural Science Foundation of Guangdong Province(Nos.S2013010012463 and S2013010014485)the Excellent Teacher Scheme in Guangdong Higher Education Institutions(No.Yq2014332)the Funds of the Guangdong college discipline construction(Nos.2013KJCX0189 and 2014KZDXM063)
文摘In this paper,the buckling behaviors of axially functionally graded and non-uniform Timoshenko beams were investigated.Based on the auxiliary function and power series,the coupled governing equations were converted into a system of linear algebraic equations.With various end conditions,the characteristic polynomial equations in the buckling loads were obtained for axially inhomogeneous beams.The lower and higher-order eigenvalues were calculated simultaneously from the multi-roots due to the fact that the derived characteristic equation was a polynomial one.The computed results were in good agreement with those analytical and numerical ones in literature.